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Nonlinear processes in the D-region ionosphere (50 to 100 km altitude) produced by

high-power Very Low Frequency (VLF, 3 - 30 kHz) and High Frequency (HF, 3 - 30 MHz)

radio wave propagation are investigated through numerical simulations, and the results are

compared against experimental observations and analytical solutions.

There are many ways to discretize Maxwell’s Equations. Five different Finite-Difference

Time-Domain (FDTD) methods implementing a linear cold plasma and discretized using the

Möbius transformation are analyzed for their performance including memory, speed, accuracy,

and stability. The methods are compared to analytical solutions for a cold plasma and excellent

accuracy is demonstrated. It is found that by applying the Möbius transformation, all methods

maintain the same stability criteria as a standard FDTD implementation of free space.

Additionally, by applying the Möbius transformation, all methods accurately simulate a cold

plasma and produce nearly identical numerical results.

Having analyzed a number of different linear methods, an optimal nonlinear method

is selected to model HF heating of the D-region ionosphere, using the 1st- and 2nd-order

moments of the Boltzmann Equation discretized using the Möbius transformation. This model

is unique in its ability to directly calculate high frequency oscillations of electron temperature,

electron density, and electron-neutral collision frequency. HF cross-modulation experiments are

simulated and compared to experimental observations with excellent agreement. Thermal cubic

nonlinearity experiments are also simulated and show that the dominant mechanism is a mixing
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of the electron-neutral collision frequency at |ω2 − ω1| with the plasma current density at ω1 in

polar regions.

The 1st- and 2nd-order moments of the Boltzmann Equation derived including the

convective derivative are presented. All terms are investigated for their impact on the plasma

current density and electron temperature for heating at VLF frequencies. It is shown that

the Joule heating term is the most significant for electron temperature heating and that the

additional terms in the 1st-order moment may play a detectable role for the plasma current

density.

A 2-D, cylindrically symmetric nonlinear lightning heating model of the D-region

ionosphere is created with update equations discretized using the Möbius transformation.

This model is used to analyze the effects of self-action produced by electric field heating of

the ionosphere on the effective reflection height of the skywave. Skywaves are simulated to

penetrate deeper into the ionosphere in the nonlinear version of the model compared to the

linear version of the model at all return stroke peak currents simulated (1 kA to 200 kA).
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CHAPTER 1
INTRODUCTION

This Ph.D. dissertation is focused on electromagnetic wave propagation through the

collisional, magnetized plasma of the D-region ionosphere (50 km to 100 km altitude). Linear

and nonlinear phenomena are investigated using Finite-Difference Time-Domain (FDTD)

modeling, and simulation results are compared against analytical solutions and experimental

observations. This dissertation begins with a brief background of the ionosphere, lightning, and

FDTD, and lists the scientific contributions of this work. Chapter 2 includes an analysis of five

linear plasma FDTD methods which are discretized using the Möbius Transformation. Chapter

3 presents the results of a nonlinear HF heating FDTD model for the D-region ionosphere and

a comparison of simulation results with experimental observations. Chapter 4 analyzes the 1st-

and 2nd-order moments of the Boltzmann equation derived including the convective derivative

and shows that the version of the Joule heating term impacts electron temperature heating the

strongest. Chapter 5 discusses the results of a nonlinear lightning FDTD model simulating the

increased electromagnetic pulse (EMP) penetration into the ionosphere due to self-action and

makes concrete predictions for ground-based observations. Chapter 6 summarizes the scientific

contributions presented in this work and suggests future research directions.

1.1 The Ionosphere and Ionospheric Modification

The ionosphere is a plasma layer surrounding the earth between ~50 km and 1000 km

altitude. The important charged species for radio wave propagation through the ionosphere

are free electrons, and example electron density profiles for nighttime and daytime are shown

in Figure 1-1. These ionospheric profiles were created using the International Reference

Ionosphere (IRI) 2016 for 03-May-2012 at the geographic location (62.39◦ N, 145◦ W) at local

12 AM, midnight, and 12 PM, noon.

The ionosphere is nominally divided into three layers called the D-region (50 km to 100

km), E-region (100 km to 150 km), and F -region (150 km and above). During the day,

ionization of the ionosphere is predominantly caused by extreme ultraviolet and x-ray radiation
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Figure 1-1. Example electron density profile of the ionosphere above HAARP (62.39◦ N, 145◦

W) at local 12 AM, ‘Night’, and 12 PM, ‘Day’.

from the sun, and at nighttime the D- and E-regions are maintained through cosmic radiation

from extrasolar sources [Chapman, 1931a,b, 1939; Rishbeth and Garriott, 1969; Hargreaves,

1979]. Figure 1-1 shows the dramatic difference in the electron density versus altitude profiles

of the nighttime and daytime ionosphere.

High-power electromagnetic (EM) waves propagating through the D-region ionosphere

meaningfully interact with the background cold plasma, producing significant changes in

electron temperature and chemical composition [Bailey and Martyn, 1934; Ratcliffe, 1959;

Stubbe and Kopka, 1977; Gurevich, 1978; Budden, 1985]. These heating and chemical changes

to the background cold plasma in turn modify the electron-neutral collision frequency and the

electron density, which control the rate of absorption and the phase propagation constant of

the radio wave. In other words, the conductivity of the ionosphere is altered by these waves,

in turn affecting the propagation of the same radio waves: i.e., self-action [Gurevich, 1978].

The ionospheric modification therefore changes the way that the waves propagate through the

ionosphere and leads to nonlinear effects such as self-absorption, cross-modulation, and the

generation of “combination” frequencies [Getmantsev et al., 1974].

Three sources of these modifying waves are considered: 1) high-power, ground-based High

Frequency (HF, 3 - 30 MHz) ionospheric heaters, 2) Very Low Frequency (VLF, 3 kHz - 30

13



kHz) transmitters, and 3) lightning. Man-made high-power radio wave transmitters that are

capable of significantly modifying the overlying ionosphere exist around the world. There are

a few ionospheric heaters (HF transmitters directed vertically) around the world, such as the

High-frequency Active Auroral Research Program (HAARP) Observatory in Gakona, Alaska,

the Arecibo Observatory in Arecibo, Puerto Rico, the European Incoherent Scatter Scientific

Association (EISCAT) heater located near Tromsø, Norway, and the Sura Heater located near

Vasilsursk, Russia. Among the ionospheric heaters, HAARP is by far the most flexible and

versatile transmitter. The experimental observations used in this work were performed near

HAARP, which is a 12x15 phased array capable of transmitting between 2.8 and 10 MHz with

a total radiated power of 3.6 MW and an ERP of 1 GW. There are also numerous transmitters

in the VLF range operated by Navies for submarine communications such as NAA (24 kHz) in

Cutler, ME, USA with an estimated total radiated power of 1 MW, and NLK (24.8 kHz) in Jim

Creek, WA, USA with an estimated total radiated power of 250 kW [Rodriguez, 1994]. In this

work, we will use VLF sources to explore the relative importance of convective derivative terms

in various moments of the Boltzmann Equation. Lightning, on the other hand, is a natural,

nearly world-wide phenomenon with a global average flash rate of ~100 flashes per second.

Lightning can also significantly modify the overlaying ionosphere, resulting in electron density

and temperature changes and even produce dielectric breakdown.

1.1.1 Ionospheric Heating by Man-Made HF Transmitters

At ionospheric heaters like HAARP, the conductivity of the ionosphere can be modified by

purposefully selecting the power, frequency, polarization, modulation scheme (e.g., sine, square

wave, CW), modulation frequency, HF beam direction, and HF beam pattern transmitted. A

wide range of ionospheric heating experiments investigate the nonlinear interactions in the

ionosphere.

Tellegen [1933] presented the first example of nonlinear radio wave interaction in the

ionosphere when the Luxembourg broadcasting station was picked up on another radio

station that propagated through the same ionospheric region. This led to the initial theory
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behind nonlinear interactions in the ionosphere presented by Bailey and Martyn [1934]. This

phenomenon became known as the Luxembourg Effect and is scientifically referred to as

cross-modulation. The theory behind cross-modulation was addressed quantitatively by Huxley

and Ratcliffe [1949]. More recent HF heating experiments of cross modulation have been

performed by Senior et al. [2010] at EISCAT and Langston and Moore [2013] at HAARP.

A primary focus of modulated ionospheric heating experiments is Extremely Low

Frequency (ELF, 3 Hz - 3 kHz) and VLF wave generation [e.g., Stubbe et al., 1982; James

et al., 1984; Ferraro et al., 1984; Barr et al., 1985; Rietveld et al., 1989; Barr and Stubbe,

1991; Milikh et al., 1999; Moore et al., 2006; Moore, 2007; Moore et al., 2007; Moore and

Agrawal, 2011; Moore et al., 2012; Cohen et al., 2008, 2010, 2012b; Agrawal and Moore,

2012; Cohen and Golkowski, 2013; Fujimaru, 2014; Getmantsev et al., 1974]. The theory

for these experiments was first presented by Stubbe and Kopka [1977] and relies upon a

naturally forming DC current in the ionosphere known as the auroral electrojet. Modulating

the conductivity of the ionosphere at ELF/VLF frequencies in the presence of the electrojet

also modulates the current of the electrojet. This creates a giant radiating antenna at the

modulation frequency and its harmonics in the D-region ionosphere. Electrojet dependent

ELF/VLF wave generation techniques include amplitude modulation, beat-wave modulation,

Synthesized Two Frequency (STF) modulation, interharmonic modulation, frequency-time

multiplexing, beam-painting, and geometric modulation, among others. Due to the low

propagation loss of ELF/VLF waves bound by the earth-ionosphere waveguide, these generated

signals can propagate thousands of kilometers [Moore et al., 2007] and be injected into the

magnetosphere as whistler mode waves [Inan et al., 2004; Golkowski et al., 2008, 2009, 2010].

The above methods for ELF/VLF wave generation are all dependent on the presence

of an electrojet current, the strength of which varies with time. To more reliably create

ELF/VLF waves using modulated HF heating, other techniques are needed. Papadopoulos et

al. [2011a,b] presented modeling results and experimental observations of Ultra Low Frequency

(ULF, below 3 Hz) and ELF generation through modulated F -region heating in the absence of
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electrojet currents. The thermal cubic nonlinearity is another electrojet independent method

for ELF/VLF wave generation. This technique was demonstrated (albeit with <1 dB SNR)

in Russia using HF transmitters by Kotik and Ermakova [1998]. The effect was demonstrated

much more clearly in Norway, using VLF transmitters by Barr [1996], and in Alaska using

HAARP by Moore et al. [2013]. The thermal cubic nonlinearity involves the interaction of two

high-power radio waves in the D-region ionosphere with frequencies ω1 and ω2 where |ω2−2ω1|

is in the ELF/VLF range. Gurevich [1978] and Kotik and Ermakova [1998] suggested that the

mechanism leading to the ELF/VLF wave generation is a mixing of the collision frequency at

2ω1 with a plasma current density at ω2 to produce a source current density at |ω2 − 2ω1|.

Moore et al. [2013] presented numerical modeling showing that the ELF/VLF source in polar

regions is instead produced by a mixing of the collision frequency at |ω2 − ω1| with the plasma

current density at ω1.

1.1.2 Ionospheric Heating by Man-Made VLF Transmitters

VLF heating of the lower ionosphere was theoretically discussed in detail by Galejs [1972]

in which the D-region was modeled at nighttime as a homogenous, magnetized plasma with

a sharp boundary at 85 km. Galejs [1972] predicted electron temperature increases of 10%

for a 1000 kW transmitter. Rodriguez [1994] performed a controlled VLF heating experiment

by cycling the the NAA VLF transmitter OFF and ON and measuring the effect on the NSS

(21.4 kHz, 265 kW, Annapolis, MD) VLF transmitter signal. It was found that the NSS signal

recorded in Gander, Newfoundland increased in amplitude up to 0.84 dB and retarded in

phase by as much as 5.3◦. Marshall [2014] utilized a nonlinear FDTD model to investigate

the effects of VLF transmitter power and frequency, and magnetic dip angle on a nighttime

ionosphere. Daytime effects were not investigated due to the increased electron density, which

in the model of Marshall [2014] requires an extremely small time-step to maintain stability.

Absorption of trans-ionospheric propagating VLF waves from ground based transmitters have

been simulated and compared with experimental observations by Cohen et al. [2012a] and

Graf et al. [2013]. Simulations by Cohen et al. [2012a] and Graf et al. [2013] utilized the
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model detailed in Lehtinen and Inan [2008, 2009] which does not include electron temperature

heating or electron density changes.

1.2 Ionospheric Effects of Lightning

Lightning produces strong quasi-static fields and radiates EM waves across the frequency

spectrum and typically at a significantly higher power than most man-made transmitters.

These fields and waves are capable of heating and ionizing the overlying ionosphere creating

disturbances known as “transient luminous events” (TLEs), which include elves, sprites, sprite

halos, blue starters, blue jets, and gigantic jets [Inan et al., 2010]. Elves were first discovered

visually by Boeck et al. [1992] and are a result of the radiated EMP. They are observed

optically for less than 1 ms [Newsome and Inan, 2010] as red bursts of light [Taranenko

et al., 1993a] between 85 km to 100 km altitude and up to 700 km radially [Barrington-

Leigh and Inan, 1999; Wescott et al., 2001]. Sprites and sprite halos are caused by the

lightning quasi-electrostatic field and were first discovered by Franz et al. [1990] after being

predicted by Wilson [1924]. Sprites are seen between 50 km and 95 km [Sentman et al., 1995]

whereas sprite halos are seen around 70 km to 85 km with a radial extent of 40 km to 85

km [Barrington-Leigh et al., 2001]. Blue jets are electrical sparking above the thundercloud

top reaching an altitude of 40 km to 50 km [Boeck et al., 1995; Wescott et al., 1995]. Blue

starters are very similar to blue jets, but only reach an altitude of 25 km [Wescott et al., 1996].

Gigantic jets were first observed by Pasko et al. [2002] and are upward lightning discharges

reaching 90 km altitude [Su et al., 2003].

The EMP from a lightning strike is capable of propagating thousands of kilometers in

the Earth-Ionosphere (EI) waveguide. The one-hop skywaves examined here reflect from

the lower ionosphere once before being received at the recording station on the ground as

depicted in Figure 1-2. Due to the increased path length of the skywave, the groundwave

and skywave can be separated from each other in the time-domain. By using the time-delay

between respective parts of the groundwave and skywave, the effective skywave reflection

height can be determined [McDonald et al., 1979; Carvalho et al., 2017]. Used predominantly
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in Chapter 5 of this work is the peak-to-peak method which uses the time delay between the

peak vertical electric field on the ground of the skywave and the groundwave to calculate the

effective skywave reflection height. The slow-breakpoint and fast-breakpoint were identified

by McDonald et al. [1979] and the slow/fast-breakpoint methods use the time delay between

the start of the groundwave to the slow/fast-breakpoint to calculate an effective skywave

reflection height. This time domain method produces an effective reflection height because the

ionosphere is a dispersive and vertically stratified media and all frequencies will typically reflect

at slightly different altitudes [Westcott, 1962a,b].

Groundwave
ELF/VLF
Receiver

Lightning

Skywaves

Reflection height in linear 
vs nonlinear models

50 km

60 km

70 km

80 km

90 km

100 km

Nonlinear

Linear

4 6 8
log10 Ne (m

-3)

Estimated Electron Density

Figure 1-2. Depiction of a lightning skywave and groundwave propagation to a VLF receiver.
In the upper left, example estimated electron density profiles are shown.

Lightning can be used as a source to probe and characterize the ionosphere [e.g., Cheng

and Cummer, 2005; Han and Cummer , 2010a,b; Han et al., 2011; Obenberger et al., 2018;

McCormick et al., 2018; Malins et al., 2019]. Previous works have shown that lightning

can modify the electron density and electron temperature of the overlying ionosphere [e.g.,

Taranenko et al., 1993b; Pasko et al., 1997; Barrington-Leigh, 2000; Cheng and Cummer,

2005; Marshall et al., 2010; Marshall, 2012, 2014; Shao et al., 2013; Lay et al., 2014; Kotovsky

and Moore, 2016a,b; Koh et al., 2019]. Previous studies that have analyzed skywave reflection

heights from a lightning discharge have used linear models that do not include the effects of
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ionization changes or electron temperature modifications [e.g., Cheng and Cummer, 2005;

Jacobson et al., 2009a,b; Han and Cummer , 2010a,b; Han et al., 2011; Haddad et al., 2012;

Somu et al., 2015; Carvalho et al., 2017; Tran et al., 2017; McCormick et al., 2018; Qin

et al., 2019; Mostajabi et al., 2019]. Recent studies have used nonlinear models to analyze

ionospheric changes due to lightning [e.g., Taranenko et al., 1993b; Pasko et al., 1997; Kuo

et al., 2007, 2012; Marshall et al., 2010; Marshall, 2012, 2014; Liu, 2012; Luque et al., 2014;

Kotovsky and Moore, 2016a,b, 2017; Gordillo-Vazquez et al., 2016], but have not directly

investigated skywave propagation. Salem et al. [2015] created a 1-D model to solve for the

steady-state, modified from ambient, electron density profile at nighttime caused by the

electrostatic fields present above a thunderstorm. This model was expanded to include the

effects of collision frequency changes by Salem et al. [2016] and the effect on ELF/VLF

reflection heights were determined. A model that includes the time-varying nonlinearities of

electron density and collision frequency changes in conjunction with the quasi-electrostatic

and radiated EMP is needed to investigate the effect on skywave propagation from a lightning

return stroke.

1.3 Finite-Difference Time-Domain

The Finite-Difference Time-Domain (FDTD) method is used in this work to model linear

and nonlinear wave interactions with the ionosphere from VLF and HF ionospheric heaters

and lightning. The FDTD method was initially proposed by Yee [1966] to handle isotropic

and non-dispersive media. Fundamentally, FDTD works by discretizing the two Maxwell

curl equations (Ampere’s Law (Eq. 1-1) and Faraday’s Law (Eq. 1-2)) in time and space.

Implementation of these equations naturally satisfy ∇ · D⃗eff = 0 and ∇ · B⃗ = 0, but also allow

∇ · (ϵ0E⃗) = ρ to be calculated after the fact.

∇× H⃗ = J⃗ + ϵ0
∂E⃗

∂t
=
∂D⃗eff

∂t
(1-1)

∇× E⃗ = −µ0
∂H⃗

∂t
(1-2)
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In Eq. 1-1, D⃗eff is an effective electric flux density, written throughout the rest of this

work as D⃗. By offsetting the electric and magnetic field in time and space, visualized in Figure

1-3, it is possible to leapfrog each forward in time, solving for wave propagation. Since the

original method was proposed, several FDTD techniques have advanced to model a linear,

dispersive anisotropic cold plasma, of which two main method groups have been used and

developed widely: recursive convolution (RC) [e.g., Luebbers et al., 1990, 1991; Hunsberger

et al., 1992; Kelley et al., 1996] and direct integration (DI) [e.g., Nickisch and Franke, 1992;

Young, 1994; Cummer, 1997; Young and Nelson, 2001; Hu and Cummer , 2006; Yu and

Simpson, 2010]. The RC group includes the original first-order accurate method [Luebbers

et al., 1991] and the later piecewise-linear RC (PLRC) [Kelley et al., 1996] method which

provides second-order accuracy. For modeling the ionosphere, Cummer [1997] found that the

PLRC method is more accurate than the DI method for a fixed computational effort, but that

the stability criteria of the PLRC method depends on the plasma parameters. In nonlinear

simulations of ionospheric heating experiments and lightning, the plasma parameters such as

the electron density and collision frequency can change every iteration. This effect makes the

stability criteria and maximum time-step unknown at the start of the simulation and for this

reason, the RC group of methods will not be investigated further in this dissertation.

This work focuses on the DI group of methods because of their comparable accuracy to

PLRC methods, their ability to maintain a stability criteria the same as a free-space FDTD

implementation, and their direct applicability to nonlinear media. When modeling a cold

plasma, the DI method discretizes Maxwell’s equations coupled with an auxiliary ordinary

differential equation (ADE). For a linear cold plasma, the ADE is typically the expression for

the plasma current density (Eq. 1-3) derived using magneto-ionic theory [Budden, 1985].

∂

∂t
J⃗ =

q2eNe

me

E⃗ +
qe
me

J⃗ × B⃗0 − νJ⃗ (1-3)

Eq. 1-3 is the 1st-order moment of the Boltzmann Equation, also known as the

momentum transport equation, derived neglecting the convective derivative. Discussed in
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Figure 1-3. Depiction of a 1-D FDTD grid with the electric field and magnetic flux density
offset in time and space. Surrounding field points at a previous time-step are used
to update the new field value.

Chapter 4 is the 1st-order moment of the Boltzmann Equation derived including the convective

derivative. A plasma current density of the form shown in Eq. 1-3 is appropriate for modeling

ELF/VLF propagation in the Earth-Ionosphere waveguide where significant heating of the

ionosphere does not occur. Various cold plasma FDTD methods utilizing an ADE have been

developed and presented over the years including those by Nickisch and Franke [1992], Young

[1994], and Cummer [1997]. Cummer [1997] found that Nickisch and Franke [1992] is unstable

if ν ̸= 0 and the stability of Young [1994] depends on the plasma parameters. These methods

were originally presented to handle an isotropic, non-magnetized cold plasma. Hu and Cummer

[2006] expanded the method from Cummer [1997] to include a vertical magnetic field in a 2-D

cylindrical model. This method was presented in more detail for 3-D Cartesian coordinates

with an arbitrarily directed background magnetic field by Yu and Simpson [2010] and both

implementations are found to maintain the same stability criteria as a free-space FDTD

implementation by the authors.

The cross product of the plasma current density and background magnetic field in Eq.

1-3 requires that all components of the plasma current density are solved simultaneously. To

overcome this requirement, some DI methods manipulate the plasma current density in order
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to create a relationship between E⃗ and D⃗ through an effective permittivity. This relationship

serves as the ADE for these methods and will be shown in Chapter 2 for an anisotropic cold

plasma. Although it was for Debye and Lorentz media, this style of ADE was first presented

by Joseph et al. [1991], followed by Gandhi et al. [1993] for a two-relaxation Debye medium.

Young and Nelson [2001] expanded and presented this method for an isotropic cold plasma.

Gamliel [2017] built upon this work and derived an anisotropic cold plasma method. This

dissertation investigates possible reasons why some of these implementations behave better

than others.

1.3.1 Möbius Transformation

An FDTD method for an anisotropic cold plasma in which the stability factor does not

rely upon the plasma parameters is extremely beneficial in reducing computational run-time

and is important for future nonlinear implementations. When the stability factor is dependent

on the plasma parameters, the time-step can be limited to a value much smaller than a

non-dependent implementation. This causes significantly longer simulation run times, which Hu

and Cummer [2006] showed could be an order of magnitude longer. This effect is especially

apparent for a nonlinear implementation in which the plasma parameters change dynamically.

The maximum and minimum of the plasma parameters are not necessarily known beforehand,

and it is unknown what the maximum allowed time step is.

The discretization of Mth-order dispersive media by means of the Möbius transformation

(MT) addresses this problem and was first applied to FDTD by Pereda et al. [2002]. The MT

stably maps the poles of a continuous system to a discrete system. A benefit of the MT is

that a stable system in the continuous domain maintains its stability in the discrete domain.

Discretization using the MT of a continuous-time system in the frequency domain was shown

by Pereda et al. [2002] to be the following mapping of ω:

jω → 2j

∆t

sin(ω∆t/2)

cos(ω∆t/2)
= j

W

V
(1-4)
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where we define:

jW =
2j

∆t

sin(ω∆t/2) =
e

jω∆t
2 −−jω∆t

2

∆t
(1-5)

and

V = cos(ω∆t/2) =
e

jω∆t
2 +

−jω∆t
2

2
. (1-6)

Discretization of a continuous-time system (F (t)) to a discrete-time system (F n) in the time

domain utilizes the following time-derivative mapping:

dm

dtm
F (t) → (jω)mF (ω) →

(
j
W

V

)m

F

(
W

V

)
(1-7)

where m is the order of the differential, and j is
√
−1. The first mapping in Eq. 1-7 is the

Fourier transform from the time domain to the frequency domain and the second mapping is

the Möbius transformation in the frequency domain.

In the frequency domain, one may then multiply all terms by appropriate powers of W

and V so that no W ’s or V ’s remain in the denominator of any one term. The inverse Fourier

transform of V can be seen to be an average of the terms spaced ∆t
2

and −∆t
2

from any point

in time. Similarly, the inverse Fourier transform of W represents the differential between two

terms spaced in time and separated by ∆t.

Previous works such as those by Hu and Cummer [2006], Yu and Simpson [2010],

and Gamliel [2017] have created anisotropic plasma FDTD models with update equations

discretized the same way as if using the MT, although none explicitly mention use of the MT.

Serendipitously, their implementation of centered differencing along with centered averaging led

to implementations the same as if the MT had been utilized. Gamliel [2017] did not recognize

the MT and used the substitution jωm → jWmV M−m, where it was required to know the

highest order derivative in advance of MT application. From this description, it is seen that the

“stencil generator” of Gamliel [2017] is similar, but not the same as implementing Eq. 1-7. In

this work, the MT is used to discretize the update equations for each linear method presented

in Chapter 2. A linear method discretized using the MT from Chapter 2 is then used as the

basis for the nonlinear models presented in Chapter 3, Chapter 4, and Chapter 5.
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The methods of Hu and Cummer [2006], Yu and Simpson [2010], Gamliel [2017], and

those presented in this work have found that the stability factor is not a function of the plasma

parameters. The ability to create a cold plasma FDTD with a stability condition the same as a

free space FDTD implementation, regardless of the plasma parameters, is a strong motivating

factor to use the Möbius transformation to discretize the FDTD update equations. This

motivating factor is even more important for nonlinear implementations which can have the

plasma parameters change every iteration.

Although a number of cold plasma FDTD models exist, a comparative analysis, especially

one including the effects of the MT has not yet been completed (until this dissertation).

The five method’s analyzed in Chapter 2 are derived starting with fundamentally the

same three equations which are Ampere’s Law (Eq. 1-1), Faraday’s Law (Eq. 1-2), and

momentum-transfer (Eq. 1-3), but the implementations range from first-order to twelfth-order.

The range in order may produce significant differences between the five methods and trade-offs

may exist between memory, speed, and accuracy. For example, the second-, first- and

zeroth-order differentials for a second-order differential system as given by the MT are:

∂2fn

∂t2
=

1

(∆t)2
(
fn+1 − 2fn + fn−1

)
⇔ (jW )2 (1-8)

∂1fn

∂t1
=

1

2(∆t)1
(
fn+1 + 0fn − fn−1

)
⇔ jWV (1-9)

∂0fn

∂t0
=

1

4(∆t)0
(
fn+1 + 2fn + fn−1

)
⇔ V 2. (1-10)

Note that the last term uses the average value of the field, not just the field at time step n.

For a fourth-order differential system, however, the fourth through zeroth-order

differentials as given by the MT are:

∂4fn

∂t4
=

1

(∆t)4
(
fn+2 − 4fn+1 + 6fn − 4fn−1 + fn−2

)
⇔ (jW )4 (1-11)
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∂3fn

∂t3
=

1

2(∆t)3
(
fn+2 − 2fn+1 + 0fn + 2fn−1 − fn−2

)
⇔ (jW )3V (1-12)

∂2fn

∂t2
=

1

4(∆t)2
(
fn+2 + 0fn+1 − 2fn + 0fn−1 + fn−2

)
⇔ (jW )2V 2 (1-13)

∂1fn

∂t1
=

1

8(∆t)1
(
fn+2 + 2fn+1 + 0fn − 2fn−1 − fn−2

)
⇔ (jW )1V 3 (1-14)

∂0fn

∂t0
=

1

16(∆t)0
(
fn+2 + 4fn+1 + 6fn + 4fn−1 + fn−2

)
⇔ V 4. (1-15)

It is important to note that discretization using the MT has the effect that all differentials

utilize the same number of time steps, which Gamliel [2017] described as ‘spreading’. For an

M th-order differential system, M + 1 time steps are required in the differentials. According

to the MT, implementing the time-derivatives in this manner is necessary to maintain a

plasma-parameter independent stability criteria.

1.3.2 Nonlinear FDTD

The simulation of HF heating experiments and the accurate modeling of lightning skywave

propagation requires the use of nonlinear models. For ionospheric modification simulations,

nonlinear FDTD models include a temporally and spatially varying electron temperature,

electron-neutral collision frequency, and electron density. Nonlinear FDTD methods that model

radio wave propagation through the D-region ionosphere have been created and detailed in

the literature [Kuo et al., 2007, 2012; Marshall et al., 2010; Marshall, 2012, 2014; Luque

et al., 2014; Gordillo-Vazquez et al., 2016; Kotovsky, 2016; Kotovsky and Moore, 2017].

The majority of the methods presented are for lightning interaction with the ionosphere

and focus on frequencies in the VLF range. Marshall [2014] created a FDTD model that

simulated heating from VLF transmitters, but did not include electron density changes.

Previous methods to model HF heating of the D-region ionosphere have been implemented

such as ray-tracing [Moore, 2007], but these methods do not allow for the same direct

calculation of HF oscillations of electron density, collision frequency, and electron temperature

that the FDTD method allows. Instead, estimates of these HF oscillations must be made in

post-calculation [e.g., Moore et al., 2013].
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Due to the higher power densities radiated by lightning, attempts to model ionospheric

modification from lightning are different than those for man-made transmitters. The nonlinear

model that will be used for HF heating simulations is implemented using moments of the

Boltzmann Equation; it assumes that a Maxwellian electron energy distribution is valid

throughout the heating process, and that average electron energies remain well below ~1 eV.

These assumptions are in general valid for ionospheric modification produced by man-made

transmitters. Lightning emits enough power to heat electron temperatures in the ionosphere

rapidly enough and significantly enough that the assumption of a Maxwellian distribution is not

valid. In this case, average electron energies between 1 eV and 10 eV are regularly obtained.

Models of nonlinear processes produced by lightning are thus different from those produced

by man-made transmitters. In particular, the method to update the ionospheric conductivity

is different. The method in the lightning model presented in this work makes the quasi-static

heating approximation and uses an empirical model to update the electron mobility [Pasko

et al., 1997; Pasko, 1998; Kotovsky, 2016; Kotovsky and Moore, 2017] based on laboratory

experiments [Davies, 1983; Hegerberg and Reid, 1980].

1.4 Scientific Contributions

The contributions to knowledge that are presented in the dissertation are as follows:

• I implemented five different Finite-Difference Time-Domain methods of a magnetized
collisional plasma to demonstrate that the application of the Möbius Transformation
to FDTD solutions of Maxwell’s Equations produces results of similar order accuracy
no matter the specific implementation. As a result, if the Möbius Transformation is
employed, accuracy is no longer an important trade-off consideration among accuracy,
memory usage, and speed.

• I created a nonlinear HF heating FDTD model of the D-region ionosphere based upon
the application of the Möbius Transformation to the 1st- and 2nd- order moments of
the Boltzmann Equation neglecting convection and conduction. Minor exceptions to
the rigorous application of the Möbius Transformation are made for implementation
considerations, and these exceptions are fully described. The model includes the ability
to directly calculate high-frequency oscillations of electron density, electron temperature,
and collision frequency. Data from cross-modulation experiments and thermal cubic
nonlinearity experiments at HAARP are compared to simulation results for validation.
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• I evaluated the relative importance of nonlinear terms in the 1st- and 2nd- order moments
of the Boltzmann Equation, derived accounting for the convective derivative. Results
determined the 1

σ||
J⃗ · J⃗ term that replaces the J⃗ · E⃗ term (derived neglecting convection)

has the largest relative impact on electron temperature heating at lower frequencies
(i.e., <100 kHz). Additional terms of the 1st-order moment are identified as potentially
contributing detectably to the plasma current density.

• I applied the Möbius Transformation to numerically simulate the self-action of lightning-
generated electromagnetic pulses in the D-region ionosphere, and demonstrated that this
self-action produces significantly deeper penetration of skywaves into the ionospheric
plasma at all return stroke peak currents. Model simulations support the claim that
electron temperature enhancements (rather than changes in electron density) primarily
account for this increased penetration.
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CHAPTER 2
LINEAR COLD PLASMA FDTD

In this chapter, five different direct integration (DI) FDTD methods are discretized to

simulate radio wave propagation in a collisional, anisotropic, electron-only cold plasma. The

resulting simulations are compared and contrasted. One method is directly compared to the

analytical solutions for a cold plasma for validation. All five FDTD methods are then compared

to each other including an analysis of their numerical output, stability, memory, speed, and

nonlinear applicability. The first method considered is that presented by Yu and Simpson

[2010] which couples Maxwell’s Equations with the plasma current density. Three additional

methods considered use the higher-order ADE based on the relationship between D⃗eff and

E⃗. The fifth method considered is a discretization of the cold plasma wave equation for the

electric field. The unique feature of all of these methods in comparison to most other cold

plasma FDTD methods is that the update equations are discretized by application of the

Möbius transformation as discussed in Chapter 1. One additional implementation discretized

without using the Möbius transformation is provided to highlight the importance of the Möbius

transformation.

2.1 Linear Methods

The D-region ionosphere (50 - 100 km altitude) is a highly collisional, weakly ionized, and

magnetized plasma and electromagnetic wave propagation is governed by Maxwell’s Equations:

∇× E⃗ = −∂B⃗
∂t

∇ · D⃗ = ρ

∇× H⃗ = J⃗ +
∂D⃗

∂t
∇ · B⃗ = 0

(2-1)

where E⃗ is the wave electric field, D⃗ = ϵE⃗ is the electric flux density, H⃗ is the wave’s

magnetic field, B⃗ = µH⃗ is the magnetic flux density, J⃗ is the total plasma current density, and

ρ is the total charge density. In the D-region, the permittivity (ϵ) and permeability (µ) of the

plasma are taken to be their free-space values, which do not vary spatially or temporally. This

is because one can regard the plasma as consisting of charged and neutral particles moving
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around in free-space. Therefore, ϵ = ϵ0 and µ = µ0, which allows them to be factored out

of the temporal and spatial derivatives in Eq. 2-1. Wave propagation through the plasma is

governed then by the modified Maxwell’s Equations:

∇× E⃗ = −µ0
∂H⃗

∂t
∇ · D⃗eff = 0

∇× H⃗ = J⃗ + ϵ0
∂E⃗

∂t
=
∂D⃗eff

∂t
∇ · H⃗ = 0

(2-2)

where D⃗eff is an effective electric flux density that includes the effects of the permittivity and

conductivity, written throughout the rest of the work as D⃗. For a linear, electron-only plasma,

the time variation of the plasma current density is given by the first-order moment of the

Boltzmann Equation, neglecting convection, conduction, gravity and the interaction of the

wave magnetic field with the medium:

∂

∂t
J⃗ =

q2eNe

me

E⃗ +
qe
me

J⃗ × B⃗0 − νJ⃗. (2-3)

Ne is the electron density, qe is the electron charge, me is the electron mass, B⃗0 is the

background magnetic field, and ν is the effective electron-neutral collision frequency. The first

method this paper considers (see Section 2.1.1) couples Eq. 2-3 as the ADE with the modified

Maxwell’s equations (Eq. 2-2) in order to model the cold plasma. A benefit of using Eq. 2-3

in Method 1 is that it is easy to add multiple charged plasma constituents as is sometimes

desirable.

The second, third, and fourth methods analyzed here are derived using the following

relationship between the plasma current density J⃗ , the electric field E⃗, and the effective

electric flux density D⃗:

J⃗ =
∂D⃗

∂t
− ϵ0

∂E⃗

∂t
. (2-4)

This expression is substituted into the momentum transfer equation (Eq. 2-3) in order to

obtain the following expression relating E⃗ to D⃗:
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ϵ0
∂2E⃗

∂t2
− ϵ0

qe
me

(
∂E⃗

∂t
× B⃗0

)
+ ϵ0ν

∂E⃗

∂t
+
q2eNe

me

E⃗ =
∂2D⃗

∂t2
− qe
me

(
∂D⃗

∂t
× B⃗0

)
+ ν

∂D⃗

∂t
. (2-5)

This equation is similar to that derived by Young and Nelson [2001], which was in turn

based on the method presented by Joseph et al. [1991] for Debye and Lorentz media. In

this dissertation it is anisotropic, accounting for a static B⃗0, which Young and Nelson [2001]

neglected. The anisotropy causes the three components of E⃗ to be coupled to each other and

to the three components of D⃗, in general. The second method this dissertation considers (see

Section 2.1.2) couples Eq. 2-5 as the ADE with the modified Maxwell’s equations (Eq. 2-2) in

order to model the cold plasma.

In a linear plasma, Ne, ν, and B0 are constant with time. Eqs. 2-2 and 2-3 form a linear

system and therefore, frequency domain analysis can be easily implemented. In the frequency

domain, Eq. 2-5 may be expressed as follows:

−ω2ϵ0E⃗ − ϵ0
qe
me

(
jωE⃗ × B⃗0

)
+ jωϵ0νE⃗ +

q2eNe

me

E⃗ = −ω2D⃗ − qe
me

(
jωD⃗ × B⃗0

)
+ jωνD⃗

(2-6)

Without making any assumptions about the direction of B⃗0, the effective permittivity

tensor that satisfies:

D⃗ = ¯̄ϵeffE⃗ (2-7)

can be expressed [Ratcliffe, 1959]:

¯̄ϵeff = ϵ0
¯̄I +

ϵ0ω
2
p

ω(ω − jν) [(ω − jν)2 − ω2
c ]

[
ω2
cx−(ω−jν)2 ωcxωcy−(ν+jω)ωcz ωcxωcz+(ν+jω)ωcy

ωcxωcy+(ν+jω)ωcz ω2
cy−(ω−jν)2 ωcyωcz−(ν+jω)ωcx

ωcxωcz−(ν+jω)ωcy ωcyωcz+(ν+jω)ωcx ω2
cz−(ω−jν)2

]
(2-8)
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where ¯̄I is the identity matrix, ω is the frequency of the wave, ωp =
√
q2eNe/meϵ0 is the

angular plasma frequency, and ωc = −qeB⃗0/me = ωcxx̂ + ωcyŷ + ωcz ẑ is the cyclotron

frequency. Method 3 (see Section 2.1.4) discretizes Eq. 2-7 coupled with the modified

Maxwell’s equations (Eq. 2-2) to model the cold plasma. Method 4 (see Section 2.1.5) inverts

the effective permittivity as shown in Eq. 2-9 and discretizes this equation coupled with the

modified Maxwell’s equations (Eqs. 2-2) to model the cold plasma.

E⃗ = ¯̄ϵ−1
eff D⃗. (2-9)

The derivation of the cold plasma wave equation, which is discretized by Method 5 (see

Section 2.1.6), starts with a few manipulations of the modified Maxwell’s Equations. The first

manipulation is taking an additional curl of Faraday’s Law (Eq. 1-2):

∂

∂t
∇× H⃗ = − 1

µ0

∇×∇× E⃗. (2-10)

The second manipulation is of Ampere’s Law (Eq. 1-1), and it relates the plasma current

density to the magnetic and electric field:

J⃗ = ∇× H⃗ − ϵ0
∂E⃗

∂t
. (2-11)

It will be useful to have an expression of Eq. 2-11 with an additional one and two time

derivatives performed:

∂J⃗

∂t
=

∂

∂t
∇× H⃗ − ϵ0

∂2E⃗

∂t2

∂2J⃗

∂t2
=

∂2

∂t2
∇× H⃗ − ϵ0

∂3E⃗

∂t3
.

(2-12)

The second time derivative of the curl of the magnetic field in Eq. 2-12 can be related to the

electric field by performing a time derivative of Eq. 2-10:

∂2

∂t2
∇× H⃗ = − 1

µ0

∂

∂t
∇×∇× E⃗. (2-13)
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It is noted that the time derivatives in Eq. 2-13 can be moved inside or outside of the curl

operators because the temporal and spatial derivatives are independent of each other. By

substitution of Eq. 2-10 and Eq. 2-13 into Eq. 2-12, the explicit relationships between the

plasma current density and the electric field are then:

∂J⃗

∂t
= − 1

µ0

∇×∇× E⃗ − ϵ0
∂2E⃗

∂t2

∂2J⃗

∂t2
= − 1

µ0

∂

∂t
∇×∇× E⃗ − ϵ0

∂3E⃗

∂t3
.

(2-14)

The next step in the derivation of the cold plasma wave equation for the electric field is to

take another time derivative of the first-order moment of the Boltzmann Equation (Eq. 2-3):

∂2J⃗

∂t2
=
q2eNe

me

∂E⃗

∂t
+

qe
me

(
∂J⃗

∂t
× B⃗0

)
− ν

∂J⃗

∂t
. (2-15)

where it is assumed that the electron density (Ne), collision frequency (ν), and background

magnetic field (B⃗0) are all constant in time. Substituting for the time derivatives of the plasma

current density in Eq. 2-15 using Eq. 2-14 yields:

− 1

µ0

∂

∂t
∇×∇× E⃗ − ϵ0

∂3E⃗

∂t3
=

q2eNe

me

∂E⃗

∂t
+

qe
me

(
− 1

µ0

∇×∇× E⃗ − ϵ0
∂2E⃗

∂t2

)
× B⃗0 − ν

(
− 1

µ0

∇×∇× E⃗ − ϵ0
∂2E⃗

∂t2

)
(2-16)

Equation 2-16 is the cold plasma wave equation for the electric field, but it can be put into

a more traditional wave equation form by placing the spatial derivatives on one side and the

temporal derivatives on the other for the final version:

∂(∇×∇× E⃗)

∂t
− qe
me

(∇×∇× E⃗)× B⃗0 + ν(∇×∇× E⃗) =

−µ0q
2
eNe

me

∂E⃗

∂t
+
qeµ0ϵ0
me

(
∂2E⃗

∂t2
× B⃗0

)
− µ0ϵ0ν

∂2E⃗

∂t2
− µ0ϵ0

∂3E⃗

∂t3
.

(2-17)
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The double curls on the left hand side of Eq. 2-17 are often substituted using the vector

identity ∇×∇× A⃗ = ∇(∇ · A⃗)−∇2A⃗, but it is not necessary to do so, and we do not do so

here.

Having derived the equations for the methods, we now proceed to discuss each method in

detail.

2.1.1 Method 1

The first method analyzed in this work was originally presented by Hu and Cummer [2006]

in 2-D cylindrical coordinates and then expanded to 3-D Cartesian coordinates by Yu and

Simpson [2010]. This method is unique among the methods presented in that it is straight

forward to include multiple charged species. To model an electron-only cold plasma, this

method couples the modified Maxwell’s Equations with the momentum transport equation,

shown together in Eq. 2-18. Method 1 uses a matrix inversion to simultaneously solve for the

components of the electric field and plasma current density coupled through the cross product

with the background magnetic field. The reader is referred to Yu and Simpson [2010] for a full

description and derivation of this method. To compare to the other methods presented, this

method is reduced to an electron-only plasma.

∇× E⃗ = −µ0
∂H⃗

∂t
∇ · D⃗ = 0

∇× H⃗ = J⃗ + ϵ0
∂E⃗

∂t
∇ · H⃗ = 0

∂

∂t
J⃗ =

q2eNe

me

E⃗ +
qe
me

J⃗ × B⃗0 − νJ⃗

(2-18)

It is noted that this method collocates in space and time the E⃗ and J⃗ field components

and requires time differentials of first-order, the same as Eq. 2-3. Hu and Cummer [2006]

and Yu and Simpson [2010] do not explicitly mention the use of the Möbius transformation.

It should be clear that implementing these equations using the MT would result in the same

set of update equations for the electric field and plasma current density employed by Hu and

Cummer [2006] and Yu and Simpson [2010].
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This method is included for comparison because the time rate of change of the plasma

current density is a first-order equation and this is the only method presented that uses only

first-order differentials. For a nonlinear implementation of an electron only plasma, this method

would require a 6x6 matrix inversion every iteration. The inverted matrix would then be

multiplied to two other 6x6 matrices in order to create the update coefficients. This process is

required at every grid cell in which the plasma parameters vary in time. Of course, one could

solve the 6x6 matrix inversion analytically, but this would require a similar number of multiplies

every iteration as well, although some speedup is expected.

2.1.2 Method 2

The second method couples the modified Maxwell’s Equations with Eq. 2-5 as the ADE.

These equations are shown together in Eq. 2-19.

∇× E⃗ = −µ0
∂H⃗

∂t
∇ · D⃗ = 0

∇× H⃗ =
∂D⃗

∂t
∇ · H⃗ = 0

ϵ0
∂2E⃗

∂t2
− ϵ0

qe
me

(
∂E⃗

∂t
× B⃗0

)
+ ϵ0ν

∂E⃗

∂t
+
q2eNe

me

E⃗ =
∂2D⃗

∂t2
− qe
me

(
∂D⃗

∂t
× B⃗0

)
+ ν

∂D⃗

∂t

(2-19)

It is noted that, similar to Method 1, each component of the electric field is coupled

to each other and to the effective electric flux density due to the cross product with the

background magnetic field. In order to discretize Eq. 2-5, a direct substitution for the time

differentials using Eqs. 1-8 to 1-10 is performed. This discretization process is derived below

and yields the following relationship (Eq. 2-20):
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1

∆t2

(
D⃗n+1 − 2D⃗n + D⃗n−1

)
+

ν

2∆t

(
D⃗n+1 − D⃗n−1

)
−
[
qe
me

1

2∆t

(
D⃗n+1 − D⃗n−1

)
× B⃗0

]
=

ϵ0
∆t2

(
E⃗n+1 − 2E⃗n + E⃗n−1

)
+
ϵ0ν

2∆t

(
E⃗n+1 − E⃗n−1

)
−
[
ϵ0qe
me

1

2∆t

(
E⃗n+1 − E⃗n−1

)
× B⃗0

]
+
q2eNe

me

1

4∆t0

(
E⃗n+1 + 2E⃗n + E⃗n−1

)
.

(2-20)

The latest time step of E⃗ can be solved for in terms of previous time steps of E⃗ and the

current and previous time steps of D⃗. This can be written in matrix form as the following:

A

[
E⃗n+1

x

E⃗n+1
y

E⃗n+1
z

]
= B

[
E⃗n

x

E⃗n
y

E⃗n
z

]
+ C

[
E⃗n−1

x

E⃗n−1
y

E⃗n−1
z

]
+ F

[
D⃗n+1

x

D⃗n+1
y

D⃗n+1
z

]
+G

[
D⃗n

x

D⃗n
y

D⃗n
z

]
+H

[
D⃗n−1

x

D⃗n−1
y

D⃗n−1
z

]
(2-21)

where A, B, C, F, G, and H are 3x3 coefficient matrices and are provided in the Appendix. In

order to solve for the latest time step of E⃗, Eq. 2-21 is multiplied through by A−1, yielding Eq.

2-22. The inverse of matrix ‘A’ can be calculated either numerically or analytically.

[
E⃗n+1

x

E⃗n+1
y

E⃗n+1
z

]
= A−1B

[
E⃗n

x

E⃗n
y

E⃗n
z

]
+ A−1C

[
E⃗n−1

x

E⃗n−1
y

E⃗n−1
z

]
+ A−1F

[
D⃗n+1

x

D⃗n+1
y

D⃗n+1
z

]
+ A−1G

[
D⃗n

x

D⃗n
y

D⃗n
z

]
+ A−1H

[
D⃗n−1

x

D⃗n−1
y

D⃗n−1
z

]
(2-22)

In a linear implementation, the update coefficients do not change with each iteration and

the inversion of matrix A only needs to be computed once during the code initialization, as

is the case for, A−1B, A−1C, A−1F , A−1G, and A−1H. Computing the coefficient matrices

initially and not in each update iteration significantly reduces the computational burden of

this method. For a nonlinear implementation, the update coefficients have to be recalculated

every iteration at every grid cell. To do this, A−1 is calculated, which is a 3x3 matrix inversion,

and is multiplied through to the five other 3x3 coefficient matrices. It has been found that
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implementing the analytical solution of A−1 instead of having MATLAB numerically calculate

the 3x3 matrix inversion every iteration in a nonlinear implementation performs ~6x faster.

2.1.3 Method 2: Non-Möbius Transformation

The implementation of Method 2 without utilizing the Möbius transformation is very

similar to the implementation utilizing the Möbius transformation shown above in Section

2.1.2. The same equations shown in Eq. 2-19 are the foundation for this method as well. The

Möbius transformation was utilized above through the substitution of the time differentials of

Eqs. 1-8 to 1-10 as shown in Eq. 2-20. For the non-Möbius transformation version of Method

2, the second-order (Eq. 1-8) and first-order (Eq. 1-9) time differentials are the same as for

the Möbius implementation. The zeroth-order time differential is not the same though, and Eq.

1-10 is not used. Instead the time-centered value is used as shown in Eq. 2-23.

∂0fn

∂t0
= fn (2-23)

The discretization of Eq. 2-5 in the non-Möbius transformation version of Method 2 uses

Eqs. 1-8, 1-9, and 2-23 and is shown in Eq. 2-24.

1

∆t2

(
D⃗n+1 − 2D⃗n + D⃗n−1

)
+

ν

2∆t

(
D⃗n+1 − D⃗n−1

)
−
[
qe
me

1

2∆t

(
D⃗n+1 − D⃗n−1

)
× B⃗0

]
=

ϵ0
∆t2

(
E⃗n+1 − 2E⃗n + E⃗n−1

)
+
ϵ0ν

2∆t

(
E⃗n+1 − E⃗n−1

)
−
[
ϵ0qe
me

1

2∆t

(
E⃗n+1 − E⃗n−1

)
× B⃗0

]
+
q2eNe

me

E⃗n

(2-24)

Only the zeroth-order time differential term (last term on the right hand side) in Eq. 2-24

is different from Eq. 2-20. The process to isolate and solve for the latest time step of the

electric field is the same in the non-Möbius transformation version of Method 2 as above. The

final difference is that the update coefficients A, B, and C will be different along the diagonal.
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2.1.4 Method 3

The third method analyzed in this work was presented in detail by Gamliel [2017]. The

form of the update equation for the electric field is similar to that for Method 2 with the major

difference being that Method 2 requires differentials of second-order and Method 3 requires

differentials of fourth-order. This means that Method 3 requires more time steps and update

coefficients in the update equation. This method couples the modified Maxwell’s Equations

with Eq. 2-7 as the ADE, shown together in Eq. 2-25. In this form, Eq. 2-7 solves for D⃗

which is already known through the update equation using Ampere’s Law. The manipulation of

Eq. 2-7 to solve for the latest time step of E⃗ is described next.

∇× E⃗ = −µ0
∂H⃗

∂t
∇ · D⃗ = 0

∇× H⃗ =
∂D⃗

∂t
∇ · H⃗ = 0

D⃗ = ¯̄ϵeffE⃗

¯̄ϵeff = ϵ0
¯̄I +

ϵ0ω
2
p

ω(ω − jν) [(ω − jν)2 − ω2
c ]

[
ω2
cx−(ω−jν)2 ωcxωcy−(ν+jω)ωcz ωcxωcz+(ν+jω)ωcy

ωcxωcy+(ν+jω)ωcz ω2
cy−(ω−jν)2 ωcyωcz−(ν+jω)ωcx

ωcxωcz−(ν+jω)ωcy ωcyωcz+(ν+jω)ωcx ω2
cz−(ω−jν)2

]
(2-25)

This expression for ¯̄ϵeff has powers of jω in the denominator. Any jω in the denominator

corresponds to an integration so the first step is to multiply Eq. 2-7 by the denominator of Eq.

2-8. This is equal to multiplying by ω(ω − jν) [(ω − jν)2 − ω2
c ]. The next step is to expand

this relationship in term of jω. This is shown in Eq. 2-26 for Dx.

[
(jω)4 + (jω)33ν + (jω)2(ω2

c + 3ν2) + (jω)1(ν3 + νω2
c )
]
Dx =

ϵ0
[
(jω)4 + (jω)33ν + (jω)2(ω2

c + ω2
p + 3ν2)+

(jω)1(ν3 + νω2
c + 2νω2

p) + (jω)0(ν2ω2
p + ω2

cxω
2
p)
]
Ex+

ϵ0
[
−(jω)1ω2

pωcx + (jω)0(ωcxωcy − νωcz

]
Ey+

ϵ0
[
(jω)1ω2

pωcy + (jω)0(ωcxωcz + νωcy

]
Ez

(2-26)
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An inverse Fourier transform is then performed to arrive back in the time domain shown in

Eq. 2-27. This equation is now a fourth-order ordinary differential equation relating Dx to Ex,

Ey and Ez. Similar equations can be constructed that relate Dy and Dz to Ex, Ey and Ez.

Because the update equations requires fourth-order differentials, Eqs. 1-11 to 1-15 are used to

discretize the system.

[
∂4

∂t4
+ 3ν

∂3

∂t3
+ (ω2

c + 3ν2)
∂2

∂t2
+ (ν3 + νω2

c )
∂1

∂t1

]
Dx =

ϵ0

[
∂4

∂t4
+ 3ν

∂3

∂t3
+ (ω2

c + ω2
p + 3ν2)

∂2

∂t2
+

(ν3 + νω2
c + 2νω2

p)
∂1

∂t1
+ (ν2ω2

p + ω2
cxω

2
p)
∂0

∂t0

]
Ex+

ϵ0

[
−ω2

pωcx
∂1

∂t1
+ (ωcxωcy − νωcz)

∂0

∂t0

]
Ey+

ϵ0

[
ω2
pωcy

∂1

∂t1
+ (ωcxωcz + νωcy)

∂0

∂t0

]
Ez

(2-27)

Similar to Method 2 above, the latest time step of E⃗ is now solved for in terms of

previous time steps of E⃗ and the current and past time steps of D⃗. The result is expressed:

[K]E⃗n+1 = [L]E⃗n + [M ]E⃗n−1 + [N ]E⃗n−2 + [P ]E⃗n−3

+qD⃗n+1 + rD⃗n + sD⃗n−1 + tD⃗n−2 + uD⃗n−3

(2-28)

where K, L, M, N and P are 3x3 matrices and q, r, s, t and u are scalars, all of which are

provided in the Appendix. Again, similar to Method 2, in order to solve for the latest time step

of E⃗, the inverse of matrix K is calculated numerically and Eq. 2-28 is multiplied through by

[K]−1 resulting in an update for E⃗n+1 as shown below:

E⃗n+1 = [K]−1[L]E⃗n + [K]−1[M ]E⃗n−1 + [K]−1[N ]E⃗n−2 + [K]−1[P ]E⃗n−3

+q[K]−1D⃗n+1 + r[K]−1D⃗n + s[K]−1D⃗n−1 + t[K]−1D⃗n−2 + u[K]−1D⃗n−3.

(2-29)

38



In order to efficiently implement Eq. 2-29 for a linear plasma, [K]−1 should be calculated

only once and used to multiply and create new 3x3 matrices for [K]−1[L], [K]−1[M ],

[K]−1[N ], [K]−1[P ], q[K]−1, r[K]−1, s[K]−1, t[K]−1 and u[K]−1. Because these update

coefficients do not change each iteration, they can be computed once at the beginning. For a

nonlinear plasma, the update coefficients have to be recalculated. This would require [K]−1,

a 3x3 matrix inversion, to be calculated and multiplied through to create the new nine 3x3

coefficient matrices at every grid cell every iteration. Analytically solving and implementing

[K]−1 is expected to provide a similar speedup to that seen for Method 2.

2.1.5 Method 4

The fourth method this work considers is similar to Method 3 and couples the modified

Maxwell’s Equations with Eq. 2-9 as the ADE shown together in Eq. 2-30. Method 4 differs

from Method 3 in the way that it solves for each component of E⃗. This also causes the

maximum differential order to be different as well. For Method 4, to solve for the coupled

components of E⃗ individually, the effective permittivity tensor is inverted (Eq. 2-9).

∇× E⃗ = −µ0
∂H⃗

∂t
∇ · D⃗ = 0

∇× H⃗ =
∂D⃗

∂t
∇ · H⃗ = 0

E⃗ = ¯̄ϵ−1
eff D⃗

¯̄ϵeff = ϵ0
¯̄I +

ϵ0ω
2
p

ω(ω − jν) [(ω − jν)2 − ω2
c ]

[
ω2
cx−(ω−jν)2 ωcxωcy−(ν+jω)ωcz ωcxωcz+(ν+jω)ωcy

ωcxωcy+(ν+jω)ωcz ω2
cy−(ω−jν)2 ωcyωcz−(ν+jω)ωcx

ωcxωcz−(ν+jω)ωcy ωcyωcz+(ν+jω)ωcx ω2
cz−(ω−jν)2

]
(2-30)

This method is valid for an arbitrarily directed background magnetic field and results in an

update equation with twelfth-order differentials. It is presented here for a background magnetic

field, B⃗0, in the ẑ-direction which decreases the update equation to a sixth-order differential for

ease of presentation. With this assumption, the inverse of the effective permittivity matrix can

be expressed as:
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¯̄ϵ−1
eff =

1

ϵ0


A
D1

− B
D1

0

B
D1

A
D1

0

0 0 C
D2

 (2-31)

where:

A = (jω)6 + (jω)5(4ν) + (jω)4(ω2
p + 2ω2

c + 6ν2) + (jω)3(3ω2
pν + 4ω2

cν + 4ν3)

+(jω)2(ω2
pω

2
c + 3ω2

pν
2 + ω4

c + 2ω2
cν

2 + ν4) + (jω)1(ω2
pω

2
cν + ω2

pν
3)

(2-32)

B = (jω)3(ω2
pωc) + (jω)2(2ω2

pωcν) + (jω)1(ω2
pω

3
c + ω2

pωcν
2) (2-33)

D1 = (jω)6 + (jω)5(4ν) + (jω)4(2ω2
p + 2ω2

c + 6ν2) + (jω)3(6ω2
pν + 4ω2

cν + 4ν3)

+(jω)2(2ω2
pω

2
c + 6ω2

pν
2 + ω4

c + 2ω2
cν

2 + ν4) + (jω)1(2ω2
pω

2
cν + 2ω2

pν
3 + 2ω4

pν)

+(jω)0(ω4
pν

2 + ω4
pω

2
c )

(2-34)

C = (jω)2 + (jω)1ν (2-35)

D2 = (jω)2 + (jω)1ν + (jω)0ω2
p. (2-36)

Expanding Eq. 2-9 using Eq. 2-31 yields:

ϵ0D1Ex = ADx −BDy (2-37)

ϵ0D1Ey = BDx + ADy (2-38)

ϵ0D2Ez = CDz. (2-39)

It is noted that the coupling of Ex with Dy in Eq. 2-37 and similarly Ey with Dx in Eq.

2-38 is not an issue because the latest time step of all components of D⃗ are already known and

are available to be used.

Now the frequency-domain expression for ¯̄ϵ−1
eff is converted back to the time domain and

A, B, C, D1 and D2 become differential operators:
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A = ∂6t + ∂5t (4ν) + ∂4t (ω
2
p + 2ω2

c + 6ν2) + ∂3t (3ω
2
pν + 4ω2

cν + 4ν3)

+∂2t (ω
2
pω

2
c + 3ω2

pν
2 + ω4

c + 2ω2
cν

2 + ν4) + ∂1t (ω
2
pω

2
cν + ω2

pν
3)

(2-40)

B = ∂3t (ω
2
pωc) + ∂2t (2ω

2
pωcν) + ∂1t (ω

2
pω

3
c + ω2

pωcν
2) (2-41)

D1 = ∂6t + ∂5t (4ν) + ∂4t (2ω
2
p + 2ω2

c + 6ν2) + ∂3t (6ω
2
pν + 4ω2

cν + 4ν3)

+∂2t (2ω
2
pω

2
c + 6ω2

pν
2 + ω4

c + 2ω2
cν

2 + ν4) + ∂1t (2ω
2
pω

2
cν + 2ω2

pν
3 + 2ω4

pν)

+∂0t (ω
4
pν

2 + ω4
pω

2
c )

(2-42)

C = ∂2t + ∂1t ν (2-43)

D2 = ∂2t + ∂1t ν + ∂0t ω
2
p (2-44)

where ∂t = ∂
∂t

. It is clear from Eqs. 2-37 to 2-39 that Ex, Ey, Dx and Dy are independent

from Ez and Dz when B⃗0 is directed in the ẑ-direction. Additionally, it is clear from Eqs. 2-40

to 2-44 that equations for Ex and Ey are sixth-order differential equations where the equation

for Ez is only a second-order differential equation. As a result, the equations for Ex and Ey

will be handled differently from the equation for Ez. For Ez, Eqs. 1-8 to 1-10 are used and for

Ex and Ey, the sixth-order differentials as given by the Möbius transformation are used. For an

arbitrarily directed B⃗-field, all of the update equations are 12th-order.

In order to solve for the latest time step of E⃗, Eqs. 1-8 to 1-10 and the sixth-order

differentials as given by the Möbius transformation are substituted into Eqs. 2-40 to 2-44. A,

B, C, D1, and D2 are then used in Eqs. 2-37 to 2-39 and En+1
x , En+1

y , and En+1
z are solved

for. This yields a set of equations in the form of:

41



Ex

∣∣∣n+1

k
= kE2Ex

∣∣∣n
k
+ kE3Ex

∣∣∣n−1

k
+ kE4Ex

∣∣∣n−2

k

+ kE5Ex

∣∣∣n−3

k
+ kE6Ex

∣∣∣n−4

k
+ kE7Ex

∣∣∣n−5

k

+ kDx1Dx

∣∣∣n+1

k
+ kDx2Dx

∣∣∣n
k
+ kDx3Dx

∣∣∣n−1

k
+ kDx4Dx

∣∣∣n−2

k

+ kDx5Dx

∣∣∣n−3

k
+ kDx6Dx

∣∣∣n−4

k
+ kDx7Dx

∣∣∣n−5

k

+ kDy1Dy

∣∣∣n+1

k
+ kDy2Dy

∣∣∣n
k
+ kDy3Dy

∣∣∣n−1

k
+ kDy4Dy

∣∣∣n−2

k

+ kDy5Dy

∣∣∣n−3

k
+ kDy6Dy

∣∣∣n−4

k
+ kDy7Dy

∣∣∣n−5

k

(2-45)

where the constants in the above equation are easily derived when solving for the latest time

step of E⃗. Similar to Eq. 2-45, update equations for Ey and Ez can be written out. In a

nonlinear implementation, the effective permittivity tensor will change every iteration at each

grid cell. The inversion of the effective permittivity tensor and subsequent derivation of the

update coefficients would need to be recalculated.

2.1.6 Method 5

The fifth method presented and compared in this work is a direct discretization of the cold

plasma wave equation for the electric field as shown in Eq. 2-46. A unique feature of using

the wave equation is that there is no leap-frogging in time or space between E⃗ and H⃗ which is

common and standard in most FDTD schemes. There are no field values of the magnetic field,

plasma current density, or effective electric flux density utilized in this method. Instead, the

electric field is updated wholly from previous iterations of itself.

∂(∇×∇× E⃗)

∂t
− qe
me

(∇×∇× E⃗)× B⃗0 + ν(∇×∇× E⃗) =

−µ0q
2
eNe

me

∂E⃗

∂t
+
qeµ0ϵ0
me

(
∂2E⃗

∂t2
× B⃗0

)
− µ0ϵ0ν

∂2E⃗

∂t2
− µ0ϵ0

∂3E⃗

∂t3

(2-46)

The wave equation can be discretized in 3-D for an arbitrary directed background

magnetic field and requires time differentials of third-order. As an example shown in Eq. 2-47,

the Ex component of the wave equation has been discretized assuming 1-D propagation and

42



background magnetic field alignment in the ẑ direction. A similar equation can be derived

for the Ey component. Under these propagation assumptions with a source in the x-y plane,

Ex and Ey are independent of Ez and update equations for only Ex and Ey are required. H⃗,

J⃗ , and D⃗ can be calculated directly from E⃗ during the simulation or after the simulation is

complete.
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(2-47)

There are a few things to note about the discretization of this update equation. The

double curls on the left hand side of Eq. 2-46 cause the electric field update equation to

include electric field terms spatially surrounding the intended update term. This can be seen

by the inclusion of the Ez+1
x and Ez−1

x terms in Eq. 2-47. Second, the spatially surrounding

terms are only differenced or averaged over the En+1/2 and En−1/2 time steps because they

are already the averaged values and do not require the additional terms brought on due to the

higher order differentials on the right hand side of Eq. 2-46. If the spatially surrounding terms

were averaged over the four time steps, including the latest time step, En+3/2, then the update
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equation for a singular point would be coupled with the update equations of the surrounding

points. This would require solving for the electric field update of the entire gird simultaneously.

Third, the cross product of E⃗ and B⃗0 on the right hand side of Eq. 2-46 couples the update

equations for the different directional components, Ex and Ey. This is similar to what occurs

for the four above methods.

In order to update the electric field, (Ez
x)

n+3/2 in Eq. 2-47 and (Ez
y)

n+3/2 in the

ŷ-component equation (not shown) are solved for. The two equations are then combined

into matrix form as shown in Eq. 2-48. Similar to the methods above, the inverse of matrix

A is solved for and multiplied through Eq. 2-48. The 2x2 update coefficient matrices are

provided in the Appendix. For a nonlinear implementation, A−1 would be calculated and then

the update coefficients would need to be recalculated every iteration at each grid cell.
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n−1/2
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[
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n+1/2
y

]z−1

+ I
[
E⃗

n−1/2
x
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n−1/2
y

]z−1
(2-48)

2.2 Demonstration of Methods

Method 2 was chosen to compare against a number of analytical solutions in order to

verify that these methods are accurately modeling a cold plasma. Some of the tests presented

here are similar to those presented by Gamliel [2017] for Method 3 which are considered here

to be excellent tests of cold plasma accuracy. All figures are produced from numerical results

from a 1-D implementation and unless otherwise stated, the plasma parameters used are:

ωp = 2πE9, ν = 2E9 and ωc = 4πE9. Furthermore, the background magnetic field is in the

direction of propagation, along the ẑ-axis.

2.2.1 Möbius: Unit Step and Impulse Response

The first tests are the unit step and impulse response from free-space to a constant,

isotropic cold plasma slab shown in Figure 2-1. An ideal impulse is impossible to model so the

Dirac Delta function was simulated by turning the source on for only one iteration. The unit
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step was simulated in a similar fashion where the source was turned on to its peak value and

left on. The analytical ideal response for the unit step and impulse for a plasma slab are taken

from Wait [1969] and are:

Unit Step Response = [J2(ωpt) + J0(ωpt)− 1]u(t) (2-49)

Impulse Response = −(2/t)J2(ωpt)u(t) (2-50)

where Jn is the Bessel function of first kind of order n and u(t) is the unit step function.
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Figure 2-1. (left) Unit impulse response and (right) unit step response

The reflected wave is recorded for the first 1200 iterations which is approximately 4 ns.

The calculated error for the reflected wave is 0.4536% for the impulse response and 0.2560%

for the unit step response, respectively. The simulated plasma response is plotted on top of the

analytical response in Figure 2-1. From the plotted response and the calculated error, it is clear

that Method 2 is able to closely reproduce the ideal response for the impulse and unit step.

2.2.2 Möbius: Faraday Rotation

The second test is Faraday rotation in the lossless and lossy case shown in Figure 2-2. In

these tests, the cyclotron frequency used is ωc = 1πE9, the collision frequency is ν = 4E9

and the angular frequency of the wave is ω = 10πE9. In both cases, a linearly polarized wave

in the x̂-direction is incident upon a magnetized plasma. In the lossless (no collisions) case,

the linear polarization is maintained, but rotates as a function of propagation distance. This is

due to the difference in phase propagation constants of the right hand and left hand circularly
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polarized waves which can be considered to make up the linearly polarized wave. The angle of

rotation as a function of distance is given by Inan and Inan [1999] as:

θF =
|qe|3NeB0

2m2
eϵ0ω

2c
d. (2-51)
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Figure 2-2. (left) Faraday rotation without collisions and (right) with collisions

The the analytical initial and end values plotted for the lossless and lossy cases are

plotted in Figure 2-2. Each numerically simulated wave is sampled 15 wavelengths apart or 0.9

meters. The total distance of wave propagation is 6.3 meters which we analytically calculate

an angle of rotation of 75.65◦. As can be seen here, when there are no collisions, perfect linear

polarization is maintained as a function of distance. When collisions are included, the linear

polarization becomes elliptical with a decreasing amplitude due to attenuation. For the lossy

case, the percent error of the eccentricity along with the absolute tilt angle error in degrees

for the numerical model are shown in Table 2-1. The Faraday rotation accuracy shown here is

comparable to that shown in Gamliel [2017].

Hunsberger et al. [1992] and Yu and Simpson [2010] demonstrated Faraday rotation of

a linearly polarized wave in a lossless, magnetized plasma. As was shown in Figure 2-2 for

the lossless case, the perfect linear polarization should be maintained as the wave propagates.
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Distance (m) Eccentricity Error (%) Tilt Angle Error (◦)
0 6.71e-5 0

0.9 0.1229 0.30
1.8 0.4813 0.11
2.7 1.0343 0.92
3.6 2.0407 0.72
4.5 2.8011 1.03
5.4 4.5901 1.34
6.3 5.7189 1.65

Table 2-1. Eccentricity percent error and tilt angle absolute error for Method 2 for Faraday
rotation with collisions

Instead, Hunsberger et al. [1992] and Yu and Simpson [2010] incorrectly showed the wave

becoming more elliptical as a function of distance. Gamliel [2017] incorrectly explained the

phenomenon shown in Yu and Simpson [2010] as a coupling between the intended linearly

polarized source in Ex with Jy and Ey in the plane of the source. If this was the case, then

the elliptically polarized plane wave incident on the plasma slab would maintain its eccentricity

as a function of distance. Instead, the eccentricity of the wave is changing as a function of

distance. An additional unknown loss mechanism (whether numerical or otherwise) in the

FDTD implementations of Hunsberger et al. [1992] and Yu and Simpson [2010] must be

present to explain the change of eccentricity of the polarization as a function of distance in the

lossless case.

2.2.3 Möbius: Reflection and Transmission Characteristics

The third test is the reflection and transmission coefficients along with propagation

constants for four different cold plasmas: 1) isotropic and lossless (Figure 2-3), 2) isotropic and

lossy (Figure 2-4), 3) anisotropic and lossless (Figures 2-5, 2-6), and 4) anisotropic and lossy

(Figures 2-7, 2-8). When there is a background magnetic field, the reflection, transmission and

propagation constant components are separated between the right-hand (RCP) and left-hand

(LCP) circular polarization. For normal incidence, which is simulated here, the analytical

solution for the reflection coefficient can be calculated as follows:

Γ =
n2 − n1

n2 + n1

(2-52)
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and for the transmission coefficient:

T =
2n2

n2 + n1

. (2-53)

The analytical reflection and transmission magnitude and phase can be calculated from Eq.

2-52 and Eq. 2-53. The analytical solution for the propagation constant is:

k = ω
√
µ0ϵ0n (2-54)

where:

β = real(k) (2-55)

α = imaginary(k). (2-56)

In the above calculations, ni =
√
ϵi, where ϵ1 = 1 and ϵ2 = 1− X

1−jZ±Y
, X =

ω2
p

ω2 , Y = ωc

ω
and

Z = ν
ω

.

In Figures 2-3 - 2-8, the numerical results are plotted as circles or squares on top of the

analytical calculations shown as continuous lines. Γ and τ are the reflection and transmission

coefficient, respectively. The percent error for each test case is shown in Table 2-2. In general,

the largest errors exist at sharp frequency transition points which occur mostly at the plasma

frequency or the cyclotron frequency. When collisions are included, the plots are ‘smoothed’

and the accuracy increases, especially around these transition points. This can further be

verified by referencing Table 2-2, wherein the error decreases when collisions are included. For

example, comparing an electron only plasma and an electron and collisional plasma, it is seen

that the reflection magnitude error decreases by approximately a factor of 10 in the collisional

case.
Plasma Reflection Magnitude Error (%) Transmission Magnitude Error (%) Propagation Constant Error (%)

ν = 0, B⃗0 = 0 0.4840 0.3719 0.960
ν ̸= 0, B⃗0 = 0 0.0525 0.1968 0.9666

ν = 0, B⃗0 ̸= 0 RCP 1.3306 0.8349 4.3523
ν = 0, B⃗0 ̸= 0 LCP 1.4471 0.0463 1.1208
ν ̸= 0, B⃗0 ̸= 0 RCP 0.1632 0.4972 1.2659
ν ̸= 0, B⃗0 ̸= 0 LCP 0.6251 0.0342 1.1191

Table 2-2. Percent error for Method 2 for the four plasma test cases
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The first plasma configuration is an electron only plasma shown in Figure 2-3 and the

largest deviations of the numerical results from the analytical solution occur at the plasma

frequency, 1 GHz. Below this frequency, the wave does not propagate into the plasma as

shown by the real part of the propagation constant equaling zero, but above this frequency it

does, as signified by the real part of the propagation constant being non-zero. At the plasma

frequency, the real part of the propagation constant changes from zero to rapidly increasing

positive values. The imaginary part of the propagation constant changes from a large negative

value to a constant value of zero. The reflection magnitude starts to decrease from one and

the reflection and transmitted angle reach a value of zero degrees. This transition point is

difficult to model and for all plots it is seen that the modeled results differ slightly from the

analytical values at this frequency. Just 0.1 GHz on either side of the plasma frequency, the

model accurately reproduces the analytical results.
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Figure 2-3. Response to an electron only plasma (top left) Real part of the phase constant for
free space and plasma, (top right) imaginary part of the phase constant for free
space and plasma, (bottom left) reflection and transmission coefficient magnitude,
and (bottom right) reflection and transmission coefficient phase
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Collisions are included in the second plasma configuration shown in Figure 2-4. All four

plots become rounded, and no significant deviation from the analytical solution is observed,

even near the plasma frequency. The real part of the propagation constant shows that the

wave propagates into the plasma at frequencies below the plasma frequency although the

imaginary component indicates that there is large attenuation below the plasma frequency.

Both of these parameters are modeled well across the frequency range. The reflection and

transmission magnitude show only minor deviations from the analytical result across the

frequency range modeled, and specifically at the plasma frequency, 1 GHz. Additionally, the

reflection and transmission angle is accurately modeled across the frequency range.

Fr
eq

ue
nc

y 
(G

ig
ah

er
tz

) 2.0

1.6

1.2

0.8

0.4

0.0 Fr
eq

ue
nc

y 
(G

ig
ah

er
tz

) 2.0

1.6

1.2

0.8

0.4

0.0

Re{k}
−6       0        6        12       18       24      30      36      42   −21   −18   −15   −12    −9     −6    −3     0        3

Im{k}

Analytical: Im{k0}
Numerical: Im{k0}
Analytical: Im{kplasma}
Numerical: Im{kplasma}

Analytical: Re{k0}
Numerical: Re{k0}
Analytical: Re{kplasma}
Numerical: Re{kplasma}

Frequency (Gigahertz)Frequency (Gigahertz)

C
oe

ffi
ci

en
t M

ag
ni

tu
de 1.5

1.2

0.9

0.6

0.3

0.0
0.0  0.2   0.4   0.6   0.8  1.0   1.2   1.4   1.6  1.8  2.0

Analytical: |Γ|
Numerical: |Γ|
Analytical: |τ|
Numerical: |τ|

0.0  0.2   0.4   0.6   0.8  1.0   1.2   1.4   1.6  1.8  2.0

Analytical:    Γ
Numerical:    Γ
Analytical:    τ
Numerical:    τ

C
oe

ffi
ci

en
t P

ha
se

 (d
eg

)

160

120

80

40

0

Figure 2-4. Response to an electron plasma with collisions (top left) Real part of the phase
constant for free space and plasma, (top right) imaginary part of the phase
constant for free space and plasma, (bottom left) reflection and transmission
coefficient magnitude, and (bottom right) reflection and transmission coefficient
phase

The third plasma configuration includes a static magnetic field, but no collisions, the

results for which are shown in Figures 2-5 - 2-6. The LCP component plots closely resemble

those of an electron only plasma shown in test case 1. In this case, below approximately half
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the plasma frequency, the LCP component does not propagate into the plasma. The reflection

and transmission magnitude and phase are all accurately modeled across the frequency range

(0.1 to 3 GHz). Additionally, the real and imaginary parts of the propagation constant are

modeled accurately. The sharpest transition occurs around 0.5 GHz and it is seen across the

four plots that there are no large deviations from the analytical solutions. The model can

accurately reproduce the propagation characteristics at frequencies close to resonances.
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Figure 2-5. Response to an electron plasma with a background magnetic field (top left) RCP
component reflection and transmission coefficient magnitude, (top right) RCP
component reflection and transmission coefficient phase, (bottom left) LCP
component reflection and transmission coefficient magnitude, and (bottom right)
LCP component reflection and transmission coefficient phase

The RCP component plots of the third plasma configuration are more complicated than

the LCP component and are therefore more difficult to model at a number of frequencies.

The RCP component propagates through the plasma at frequencies below the cyclotron

frequency, ωc, and at frequencies above 2.4 GHz. The real part of the propagation constant

approaches infinity as ω approaches ωc from below. Between ωc and 2.4 GHz, the real part of
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Figure 2-6. Response to an electron plasma with a background magnetic field (top left) RCP
component real part of the phase constant, (top right) RCP component imaginary
part of the phase constant, (bottom left) LCP component real part of the phase
constant, and (bottom right) LCP component imaginary part of the phase constant

the propagation constant is zero, and above 2.4 GHz, it begins to increase again. Conversely,

the imaginary part of the propagation constant is zero everywhere besides between ωc and 2.4

GHz. As ω approaches ωc from above, the imaginary part of the propagation constant goes

to negative infinity. This asymptotic behavior is difficult to reproduce and deviations from the

analytical results occur between ωc and 2.4 GHz for the real part of the propagation constant.

The reflection and transmission magnitude and phase likewise experience significant transitions

at ωc and 2.4 GHz. At ωc, the reflection magnitude should be one and the transmission

magnitude zero, although it is seen that these values are not quite achieved. At 2.4 GHz,

the transmission magnitude is well modeled, but the reflection magnitude differs slightly from

expectations. The reflection and transmission phase is well modeled across the frequency

range. The only deviation occurs at ωc for the reflection phase which is about 10◦ off from the

analytical solution.
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The fourth plasma configuration, the results for which are shown in Figures 2-7 -

2-8, includes collisions and a static background magnetic field. as with the second plasma

configuration, when collisions are included, all plots are rounded removing any sharp transitions

and asymptotic behavior. Comparing with the third plasma configuration for the LCP

component, the transitions that occur at ω01 are now more gradual and smoother. The

reflection and transmission magnitude and phase do not have a discontinuity in slope at ~0.5

GHz. There are no apparent significant deviations in the numerical results from the analytical

values for these plots. Similarly, the transition at ~0.5 GHz is more gradual now for both the

real and imaginary part of the propagation constant and the modeled results closely follow the

analytical values.

C
oe

ffi
ci

en
t M

ag
ni

tu
de 2.0

1.6

1.2

0.8

0.4

0 C
oe

ffi
ci

en
t P

ha
se

 (d
eg

)

Frequency (Gigahertz) Frequency (Gigahertz)

Frequency (Gigahertz)

C
oe

ffi
ci

en
t M

ag
ni

tu
de

Frequency (Gigahertz)

C
oe

ffi
ci

en
t P

ha
se

 (d
eg

)
180
160
140
120
100

80
60
40
20

0

140
120
100

80
60
40
20

0

RCP
Component

LCP
Component

RCP
Component

LCP
Component

Analytical: |Γ|
Numerical: |Γ|
Analytical: |τ|
Numerical: |τ|

2.0

1.6

1.2

0.8

0.4

00         0.5        1.0        1.5        2.0        2.5        3.0

Analytical: |Γ|
Numerical: |Γ|
Analytical: |τ|
Numerical: |τ|

Analytical:    Γ
Numerical:    Γ
Analytical:    τ
Numerical:    τ

Analytical:    Γ
Numerical:    Γ
Analytical:    τ
Numerical:    τ

           0.5         1.0         1.5         2.0         2.5         3.0

           0.5         1.0         1.5         2.0         2.5         3.0

Figure 2-7. Response to an electron plasma with collisions and background magnetic field (top
left) RCP component reflection and transmission coefficient magnitude, (top right)
RCP component reflection and transmission coefficient phase, (bottom left) LCP
component reflection and transmission coefficient magnitude, and (bottom right)
LCP component reflection and transmission coefficient phase
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Figure 2-8. Response to an electron plasma with collisions and background magnetic field (top
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The RCP component plots of the fourth plasma configuration are also improved in their

accuracy. In the third plasma configuration for the RCP component, significant deviations from

the analytical values occurred at ωc and 2.4 GHz. There are no more discontinuities in slope

for the reflected and transmitted magnitude and phase and the modeled results align closely

with the analytical values. Additionally, there is no more asymptotic behavior at ωc in the

real and imaginary part of the propagation constant. Across the frequency range, the real and

imaginary part of the propagation constant are now more accurately modeled.

Overall, as can be seen from the Figs. 2-3 to 2-6 and Table 2-2, excellent accuracy, similar

to that shown in Hunsberger et al. [1992] and Gamliel [2017] for Method 3, is achieved for all

four plasma configurations across the range of frequencies tested. As described above and can

be seen in Table 2-2, the error percentage decreases and the accuracy increases for all cases

when collisions are included. This is mainly due to a decrease in error that occurs at sharp
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transition points such as the asymptotic behavior of the propagation constant for the RCP in

test case 3.

2.2.4 Non-Möbius: Reflection and Transmission Characteristics

To highlight the importance of utilizing the Möbius transformation to discretize the

update equations, the results from Method 2 discretized with and without using the Möbius

transformation are presented in Figure 2-9. In this test, sinusoidal waves at various frequencies

around the plasma frequency (1 GHz) and cyclotron frequency (2 GHz) were injected into free

space and the reflection and transmission characteristics of a constant, collisional, anisotropic

plasma slab were calculated. Shown in the top panels of Figure 2-9 are the right hand

circularly polarized (RCP) components and in the bottom panels are the left hand circularly

polarized (LCP) components. The left panels show the reflection (Γ) and transmission (τ)

magnitudes and the right panels show the reflection and transmission angles. In all panels

the solid lines represent the analytical solution, the squares represent the numerical results of

Method 2 discretized using the Möbius transformation, and the circles represent the numerical

results of Method 2 discretized without using the Möbius transformation.

For the Möbius transformation method, the magnitude of the reflection and transmission

coefficients align well with the analytical solution across the frequencies simulated here for both

the RCP and LCP components. The non-Möbius transformation method does not align as well

as the Möbius transformation method with the analytical solution. The RCP components of

the reflection and transmission magnitude do not agree well with the analytical solution for

any frequency evaluated. The transmission magnitude is consistently overestimated below the

cyclotron frequency and then underestimated above it. The reflection magnitude is consistently

underestimated at all frequencies. The LCP component of the reflection and transmission

magnitude deviates significantly from the analytical solution at frequencies below the plasma

frequency. As the frequency increases, the analytical and numerical results appear to converge.

The Möbius transformation method accurately calculates the transmission angle for the

RCP and LCP components with little deviation from the analytical solution shown. There
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Figure 2-9. Analytical solutions are shown as solid lines and numerical results are shown as
squares for the Möbius transformation method and circles for the non-Möbius
transformation method (top left) reflection and transmission magnitude for the
RCP component, (top right) reflection and transmission angle for the RCP
component, (bottom left) reflection and transmission magnitude for the LCP
component (bottom right) reflection and transmission angle for the LCP
component

is deviation from the analytical solution for the reflection angle in both the RCP and LCP

components of up to 4◦. The deviation becomes larger as the frequency increases. The

non-Möbius transformation method has larger deviations from the analytical solutions than

the Möbius transformation method. The transmission angle around the cyclotron frequency

deviates by up to 10◦ for both the RCP and LCP components. The reflection angle accuracy

appears similar to the Möbius transformation method for the RCP component but for the

LCP component, the non-Möbius transformation method begins to deviate from the analytical

solution at lower frequencies.
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Figure 2-9 shows that there are significant deviations in the numerical results from

the analytical solution when the Möbius transformation is not used to discretize Method 2.

These deviations become significantly smaller when Method 2 is discretized using the Möbius

transformation. Additionally, the non-Möbius transformation version of Method 2 is found to

be unstable at a stability factor of 1. Instead, a stability factor of 0.99 was found to be stable.

This is a minor change in simulation time. However, the change from a stability factor of 1 in

1-D does introduce additional simulation noise and reduces accuracy.

2.3 Linear Method Comparison

The maximum time-differential order of each method is expected to greatly affect the

performance of each method. Therefore, the five methods are compared to each other in a

variety of ways: 1) the numerical results of each method will be compared on an iteration to

iteration basis and over an entire simulation, 2) the stability criteria of each method will be

found empirically, 3) the memory requirement and computational cost per iteration of each

method will be calculated, and 4) how each method is applicable to a nonlinear implementation

is determined.

2.3.1 Numerical Comparisons

To determine whether the discretization process has affected the numerical output of each

method, the five methods were compared in two ways: 1) from iteration to iteration and 2)

over an entire simulation.

The first numerical comparison provides each method with the same inputs and evaluates

them on an iteration to iteration basis. This will allow a direct assessment of how the output

from the update equations discretized using the MT vary from each other. In order to do this,

the field values as calculated by Method 2 are used as the previous time step inputs to the four

other methods update equations. The difference between the latest time step of the electric

field components of Method 2 and the four other methods is then determined. The peak

electric field value in the plasma during this simulation is 1 V/m. The maximum differences

in the simulated plasma for the Ex field components between Method 2 and the four other
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methods for each iteration are shown in Figure 2-10. It is found that Methods 1 and 5 are

negligibly different (on the order of 10−15) from Method 2 on an iteration to iteration basis.

Method 3 differs from Method 2 by approximately 2×10−15 and Method 4 differs from Method

2 by approximately 5 × 10−15 iteration to iteration. This shows that the five update equations

produce nearly identical output values within fifteen orders of magnitude given the same input

values on an iteration to iteration basis.
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Figure 2-10. The maximum difference in Ex between Method 2 and the four other methods on
an iteration to iteration basis.

The second numerical comparison is to allow each method to model propagation from free

space into a constant plasma slab for 4800 iterations and compare their output. This allows a

comparison of how each method handles a sharp free space to plasma boundary, propagation

within the plasma and allows differences to build up over time.

Figure 2-11 shows Ex of Method 2 at iteration 4800 and the difference between Ex

of Method 2 and the four other methods. Methods 1 and 5 show the closest agreement to

the field values of Method 2, with a difference on the order of 10−13. This is 12 orders of

magnitude lower than the peak electric field present inside the plasma. Methods 3 and 4 also
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Figure 2-11. (a) Ex of Method 2 at iteration 4800 and (b-e) difference between Method 2 Ex

and the four other methods Ex at iteration 4800.

agree well with Method 2 with a peak difference between the two on the order of 10−11 and

10−10. Again, these are 10 and 9 orders of magnitude less than the peak electric field.

From these two numerical comparisons, it is seen that all five methods model the cold

plasma similarly. The first comparison shows that, provided the same inputs, all five methods

will effectively produce the same output at the next iteration. The second comparison shows

that all five methods produce a very similar output over many iterations even in the presence

of sharp boundaries and when the differences are allowed to build up over time. From these
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two comparisons, it is concluded that discretization using the Möbius transformation results in

methods that produce nearly identical numerical results.

2.3.2 Stability

Pereda et al. [2002] showed that when the Möbius transformation is used to discretize

an Mth-order medium, the stability limit of the conventional FDTD method is preserved. All

five methods compared are discretized utilizing the MT. It is found empirically that Methods

1, 2, 3, and 5 are stable in 1-D with a stability factor of 1. In the tests performed, which are

described in Section 2.2, no dependence or variation from a stability factor of 1 based upon the

values used for ωp, ν and ωc were found.

Method 4 is found to have an instability at the free-space to plasma boundary when

modeling an electron-only plasma (i.e., ν = 0, B⃗0 = 0). This method is stable in all

other plasma configurations. The authors are unsure of the exact cause of this instability.

A possible explanation is that this method was derived assuming the background magnetic

field was along a coordinate axis (ẑ). This assumption reduced Method 4 from 12th-order

time-differentials to 6th-order time-differentials. Implementing this method utilizing the full

12th-order time-differentials may result in a stable electron-only plasma implementation.

2.3.3 Memory and Speed

Two major differences between the five methods considered here are their memory

requirements and computational cost per iteration. The main factor that plays into the

different memory usage is the order of differentials used for each implementation. For a 3-D

FDTD implementation, Method 1 uses first-order differentials, Method 2 uses second-order

differentials, Method 3 uses fourth-order differentials, Method 4 uses twelfth-order differentials

and Method 5 uses third-order differentials. The higher the differential order, the larger

number of previous time steps that are required to be saved and used in the next iteration.

This increase in previous time steps required will increase the memory requirement and the

computational cost per iteration.
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The memory requirement for each method has been split-up between field variables per

grid cell and update coefficients per grid cell as shown in Table 2-3 for a 3-D implementation.

This distinction is made because a homogenous plasma does not require the additional memory

requirement of the update coefficients every grid cell whereas a spatially varying plasma does.

It is clear from Table 2-3 that for a 3-D spatially varying plasma that Method 2 uses the least

amount of memory. Method 1 uses the next least amount of memory, but still uses about

a third more memory than Method 2. The memory usage for Methods 3, 4, and 5 are all

substantially more than Method 2.

Method Field Variables per grid cell Coefficients per grid cell Total Memory per grid cell
1 15 72 87
2 21 45 66
3 33 81 114
4 81 114 195
5 12 360 372

Table 2-3. For a 3-D implementation, the memory requirement per grid cell for each method
including the field component variables and the update coefficients.

Another significant factor when choosing a numerical method is the computational cost

or speed of that method. One way to quantify the computational cost of each method is to

determine the number of floating point operations (FLOPs) needed for the update equations.

FLOPs include any addition, subtraction, multiplication or division required in the update

equations for any field component. This comparison does not include the computational

time to reassign memory due to setting field components back in time. Table 2-4 shows the

number of FLOPs needed for each method for a 1-D, 3-D without spatial averaging, and 3-D

with spatial averaging included implementations. Spatial averaging is required in 3-D in order

to collocate field components in the update equations. Gamliel [2017] created a grid that

collocated all E⃗, D⃗, and J⃗ field values, and collocated all H⃗ field values. This grid reduces the

computational need for spatial averaging, but increases the memory requirements.

The 1-D implementation assumes that the background magnetic field is in the direction

of propagation. This way only the two perpendicular field components to the direction of

propagation need to be updated. Method 2 is determined to require the fewest FLOPs in 1-D
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followed closely by Method 5. The number of FLOPs needed per grid cell in 3-D increases

dramatically over the number needed in 1-D. When including the necessary spatial averaging,

Methods 1 through 5 increase by a factor of approximately 7.5, 5, 5, 7 and 31, respectively.

In 3-D Method 2 requires the fewest FLOPs per grid cell. The method that requires the

next fewest is Method 3 that requires 67% more than Method 2. Method 1 requires nearly

twice as many FLOPs as Method 2 in 3-D. This is surprising because Method 1 requires

differentials of the first-order and Method 2 requires differentials of the second-order. There

are two reasons why Method 1 requires so many more FLOPs per grid cell. The first is that

the update equations for J⃗ and E⃗ include the ∇ × H⃗ term. In order to properly locate all of

the H⃗ field components, a large amount of spatial averaging is needed. The second reason

is that the six field components of J⃗ and E⃗ are updated through a complex and long update

equation. In comparison, Methods 2 to 5 only require complex update equations for the three

field components of E⃗. The most drastic difference is the number of FLOPs required for a 1-D

versus 3-D implementation of Method 5. The reason for this is that the ∇ ×∇ × E⃗ terms of

the wave equation for Method 5 simplify significantly when in 1-D. In 3-D, many more terms

spatially surrounding the update location are required which increases the FLOPs because of

terms to multiply and add plus the number of FLOPs needed to spatially average.
Method 1-D FLOPs per grid cell 3-D FLOPs per grid cell w/o spatial averaging 3-D FLOPs per grid cell w/ spatial averaging

1 62 201 465
2 50 129 249
3 82 201 417
4 90 345 657
5 54 717 1677

Table 2-4. Floating Point Operations (FLOPs) per grid cell for each method including the field
component variables and the update coefficients.

2.3.4 Nonlinear Applicability

In order to properly model nonlinear phenomena, the electron density, Ne, and effective

collision frequency, ν, must be treated as time dependent variables in the FDTD methods

derivation. Examining the derivations of Methods 1 and 2, it is found that no temporal

derivatives of Ne or ν are taken and the methods do not need to be modified in order to

take into account a nonlinear plasma. In the process of deriving Methods 3 and 4, frequency
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domain analysis is used. This analysis as implemented above is not strictly valid when Ne or

ν are allowed to vary temporally. Because of this, these methods would require significant

modification to model a nonlinear plasma. Method 5 depends on the derivation of the

cold plasma wave equation which in Eq. 2-15, Ne and ν were considered to be constants.

Considering Ne and ν as time dependent variables would introduce additional terms into the

cold plasma wave equation. By including these additional terms, Method 5 does become a

valid method to use to model a nonlinear plasma.

Because Methods 1 and 2 are the only two methods presented here that are able to be

used in their current form for a nonlinear plasma, the decision on which method to use is

between them. In this dissertation, we are considering electron-only plasmas. In this case,

Method 2 is the clear choice because it was shown to require less memory and to be faster

than Method 1. Both Method 1 and Method 2 require modification of the update equations

when multiple charged species are required in the simulation. Yu and Simpson [2010] described

how to include multiple charged species for Method 1. Although it is not described in this

work, the addition of multiple charged species to Method 2 can be readily implemented. An

evaluation of each method’s memory and speed when implementing multiple charged species

is needed to determine the optimal method, but either method can be utilized to simulate a

nonlinear plasma with multiple charged species. Because we consider electron-only plasmas

throughout this dissertation, we will use Method 2 in subsequent chapters as applicable.
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CHAPTER 3
HF HEATING OF THE D-REGION

In this chapter, an FDTD model of nonlinear HF heating of the lower ionosphere is

detailed. The implementation is unique from other nonlinear FDTD models in its focus on

discretizing the 1st- and 2nd-order moments of the Boltzmann equation using the Möbius

transformation. Simulation results of HF cross modulation are compared to experimental

observations performed at HAARP in order to validate the model. The thermal cubic

nonlinearity method for VLF wave generation is simulated and the dominant mechanism is

confirmed.

3.1 Nonlinear FDTD Model

The basis for the nonlinear FDTD model is Linear Method 2 as described in Chapter 2.

This method is chosen for its direct applicability to a nonlinear model, its faster computation

time, and its lower memory requirement compared to Linear Method 1. As an electromagnetic

wave propagates through a cold, collisional plasma, it interacts with free electrons, heating

them. In the most simple case, a variable electron temperature is the main implementation

difference between a linear and nonlinear plasma FDTD model. The temperature variation is

determined using the second-order moment of the Boltzmann equation (Eq. 3-1), also known

as the energy transport equation. Our implementation neglects convection, heat conduction,

gravity, and the interaction of the wave magnetic field with the medium:

3

2
NeκB

∂Te
∂t

= J⃗e · E⃗ − 3

2
κBTe

∂Ne

∂t
− L(Ne, Te, Tn) (3-1)

where Te is the electron temperature, Ne is the electron density, κB is the Boltzmann constant,

and L(Ne, Te, Tn) is the energy loss due to electron cooling provided by Rodriguez [1994] and

Moore [2007], and references therein.

The inclusion of the second-order moment of the Boltzmann equation further causes the

inclusion of numerous other equations. The energy loss term is composed of six equations

including the rotational (Eqs. 3-2 and 3-3), vibrational (Eqs. 3-4 and 3-7), and elastic (Eqs.
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3-9 and 3-10) excitation of N2 and O2 [Rodriguez, 1994; Moore, 2007]. The total loss is taken

to be the sum of these six loss rates (Eq. 3-11).

Lrot(e,N2) = 4.65× 10−39NeNN2

(
Te − Tn

T
1/2
e

)
(3-2)

Lrot(e,O2) = 1.11× 10−38NeNO2

(
Te − Tn

T
1/2
e

)
(3-3)

Lvib(e,N2) = 4.79× 10−37NeNN2exp

(
f
Te − 2000

2000Te

)[
1− exp

(
−g

Te − Tn

TeTn

)]
(3-4)

where f is a dimensionless parameter given by:

f = 1.06× 104 + 7.51× 103tanh [0.0011(Te − 1800)] (3-5)

and g is a dimensionless parameter given by:

g = 3300 + 1.233(Te − 1000)− 2.056× 10−4(Te − 1000)(Te − 4000) (3-6)

Lvib(e,O2) = 8.32× 10−38NeNO2exp

(
f
Te − 700

700Te

)[
1− exp

(
−2700

Te − Tn

TeTn

)]
(3-7)

where f is :

f = 3300− 839sin [0.000191(Te − 2700)] (3-8)

Lelast(e,N2) = 1.89× 10−44NeNN2

(
1− 1.21× 10−4Te

)
Te(Te − Tn) (3-9)

Lelast(e,O2) = 1.29× 10−43NeNO2

(
1 + 3.6× 10−2T1/2

e

)
T1/2

e (Te − Tn) (3-10)
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LTotal = Lrot(e,N2)+Lrot(e,O2)+Lvib(e,N2)+Lvib(e,O2)+Lelast(e,N2)+Lelast(e,O2) (3-11)

In order to solve for the time rate of change of the electron density, a simple four-species

chemistry model of the D-region is implemented [Rodriguez, 1994; Rodriguez and Inan,

1994; Moore et al., 2013]. Compared to the short timescales of microseconds to milliseconds,

which apply for many HF heating experiments, changes in species density, and specifically,

the electron density, occur on much longer timescales and, therefore, can be neglected. For

HF heating experiments that heat continuously for multiple seconds, these chemistry changes

cannot be ignored, however. In order to account for both HF heating possibilities in this

model, the simple 4-species chemistry model is employed. The four species are electrons (Ne),

negative ions (N−), primary positive ions (N+), and positive water cluster ions (N+
x ). The

inputs to this model are N2, O2 and electron density profiles and a neutral species temperature

profile, which is also used as the ambient electron temperature profile. Using these inputs, the

ambient profiles of the remaining species are calculated. When calculating for the ambient

profiles, the time rate of change of the four species is set to zero. After calculating the

ambient values as described by Rodriguez and Inan [1994] and the wave-propagation begins,

the species are allowed to vary in time as shown in Eqs. 3-12 to 3-15.

dNe

dt
= Io + γN− − βNe − αdNeN

+ − αc
dNeN

+
x (3-12)

dN−

dt
= βNe − γN− − αiN

−(N+ +N+
x ) (3-13)

dN+

dt
= Io −BN+ − αdNeN

+ − αiN
−N+ (3-14)

dN+
x

dt
= −αc

dNeN
+
x +BN+ − αiN

−N+
x (3-15)
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The updated electron temperature from Eq. 3-1 is used to calculate the average

electron-neutral collision frequency. Collisions with O2 and N2 are considered and the rates are

taken from Rodriguez [1994]. and references therein, shown in Eqs. 3-16 and 3-17.

νav(e,N2) = 2.33× 10−17N2(1− 1.21× 10−4Te)Te (3-16)

νav(e,O2) = 1.82× 10−16O2(1 + 3.6× 10−2T
1
2
e )T

1
2
e . (3-17)

The total average electron-neutral collision frequency is equal to the sum of these two

equations and was taken by Moore [2007] to be:

νav = νav(e,N2) + νav(e,O2). (3-18)

Assuming that ν(v) ∝ v2, for the frequency range of interest, the effective collision

frequency is proportional to the average collision frequency [Sen and Wyller, 1960; Budden,

1988]:

νeff =
5

3
νav. (3-19)

In Linear Method 2, the current density J⃗ is not explicitly discretized and calculated. In

order to calculate J⃗ · E⃗, the Joule heating term, in Equation 3-1, the current density is needed.

Equation 1-1 is solved for the current density to create Equation 3-20 which is then discretized.

J⃗ =
∂D⃗eff

∂t
− ϵ0

∂E⃗

∂t
(3-20)

A full and proper discretization of Eq. 3-1 using the MT is desired, but is not practical

to implement. The MT should be applied to all time-varying field components (E⃗, D⃗, J⃗ , and

H⃗) along with all time-varying plasma parameters (Te, ν, and Ne). Practically, this means that

all time-varying terms in Eq. 3-1 (E⃗, J⃗ , L, Te, and Ne) should either be center-differenced or

center-averaged in time. The difficulty is that the latest time step of Ne and L are not known

yet, and are complicated functions of Te.
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Tn+1
e = Tn−1

e +

4∆t

3Nn
e kB

[(
Jn+1
x En+1

x + Jn+1
y En+1

y + Jn+1
z En+1

z

)
4

+
2
(
Jn
xE

n
x + Jn

y E
n
y + Jn

z E
n
z

)
+
(
Jn−1
x En−1

x + Jn−1
y En−1

y + Jn−1
z En−1

z

)
4

]

−2∆tTn
e

Nn
e

(
Io + γnN−n − βnNn

e − αn
dN

n
e N

+n − αcn

d Nn
e N

+n

x

)
− 4∆t

3Nn
e kB

[
Ln(Nn

e , T
n
e , To) + 2Ln−1(Nn−1

e , Tn−1
e , To) + Ln−2(Nn−2

e , Tn−2
e , To)

4

]
(3-21)

The implementation considerations can be seen more clearly by examining the discretized

version of Eq. 3-1, shown in Eq. 3-21, without fully utilizing the MT. The first item to note

is that Eq. 3-21 is centered at time step n, therefore all other terms need to be valid and

centered at this same time step. The second is that in this discretized version, only the J⃗ · E⃗

term is center-averaged in time. This is possible because the Jn+1 and En+1 terms are known.

L(Ne, Te, Tn) is backwards-averaged in time in order to provide as much consistency with the

MT as possible. It is not reasonably possible to center-average the loss rates because they

are nonlinear functions of Te and it is difficult to solve Ln+1(Nn+1
e , T n+1

e , To) for T n+1
e . Ne

is not center-averaged in time either because Nn+1
e is similarly a nonlinear function of Te.

Justification for using the time-centered value of Ne can be found by looking at the time

rate of change of Ne. At a period of steady-state CW heating, the max percent change in

Ne between iterations is found to be less than 4 × 10−10%, meaning that the time-centered

value and the center-averaged value of Ne would be nearly the same. When Te is used as a

coefficient to the electron density time derivative term it should be center-averaged in time

where-as a time-centered value is used. Using the same justification as for Ne, at a period

of initial CW heating when Te is changing the most rapidly, Te is found to change by less

than 0.1% each iteration. The third difference from a MT implementation to note is the time

derivative of the electron density is not directly discretized. Instead, the right hand side of

Equation 3-12 is used, using time-centered values.
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Due to the inclusion of many more equations than a standard free-space FDTD, the

update loop becomes a more complicated 9 step process.

1. Update D⃗eff using H⃗: Eq. 1-1

2. Update E⃗ using D⃗eff : Linear Method 2

3. Calculate J⃗ using D⃗eff and E⃗: Eq. 3-20

4. Update Te: Eq. 3-21

5. Calculate νav using Te: Eqs. 3-16 to 3-18

6. Calculate νeff using νav: Eq. 3-19

7. Update Ne using the chemistry model: Eqs. 3-12 to 3-15

8. Calculate new update coefficients for step 2

9. Update H⃗ using E⃗: Eq. 1-2

Having detailed the nonlinear HF heating model in detail, we now simulate cross-modulation

and thermal cubic nonlinearity HF heating experiments, and compare with experimental

observations.

3.2 HF Cross Modulation

In order to verify that the nonlinear FDTD HF heating model produces the desired

nonlinearities, it was compared to observations performed during an HF cross-modulation

experiment and presented by Langston and Moore [2013]. Cross modulation, also know as the

Luxemburg Effect, occurs when a powerful, modulated radio wave modifies the conductivity

of the ionosphere and a second radio wave propagating through this same region has the

modulation imparted onto it. For this experiment, HAARP was split into two sub-arrays: one

array transmitted a high power 3.25 MHz modifying beam and the other array transmitting a

low power 4.5 MHz probe pulse. This is shown schematically in Figure 3-1. Using a specific

transmitting schedule, Langston and Moore [2013] were able to separate the modulation

caused by the upward and downward propagation of the probe pulse through the heated region.

In this work, the predictions of the HF heating model are compared to observations of the
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up-going cross-modulated wave for four amplitude-modulation (AM) schemes: 2.5 kHz sine,

2.5 kHz square, 10 kHz sine, and Continuous Wave (CW).
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Figure 3-1. Schematic diagram of HF cross-modulation indicating the up-going and
down-going modulation of the probe pulse.

To model HF cross modulation, a 1-dimensional FDTD grid was created. The grid

spans from 44 km to 103 km altitude with a spatial step size of 3 meters and time step

of approximately 10 ns was employed, corresponding to a Courant Stability Factor of 1.

This small step size ensured at least 22 grid cells per wavelength for the highest frequency

transmitted, 4.5 MHz (λ = 66.6 m). The wave was injected into free space at 45 km and

the lower plasma boundary was set at 50 km. The wave propagated through the plasma and

was recorded just before the plasma ended at 100 km. The remaining grid space was set to

free space with an absorbing boundary condition to prevent any reflections. It might seem

that reflections from the free-space/plasma boundary and the plasma/free-space boundary

might cause problems, but this is not the case in practice. At HF frequencies and for ambient

conditions at 50 km, the transmission and reflection coefficients are almost identically 1 and

0, respectively. Similarly, at 100 km the reflection coefficient is found to be much less than 1

percent.
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In this section, plots of cross modulation ’Magnitude’ and ’Phase’ are shown. The

’Magnitude’ plots are given in dB, and 0 dB represents the magnitude of the probe pulse at

the top of the D-region (100 km here) if no heating wave was present. A value, for instance,

of -3 dB in the ’Magnitude’ plots represents 3 dB of attenuation caused by the increased

absorption in the heated plasma. Similarly, the ’Phase’ plots are given in degrees where 0

degrees represents the phase of the probe pulse at the top of the D-region if no heating pulse

was present. A variation from 0 degrees represents a change in the probe pulses phase caused

by the time varying conductivity.

3.2.1 Heating and Cooling

When a high power radio wave propagates through the D-region ionosphere, the wave is

absorbed by the collisional plasma. This absorption transfers energy from the radio wave to

the plasma, heating the plasma. The D-region ionosphere can be considered a cold plasma, so

that the neutral species are not significantly heated and can be considered to remain at their

ambient temperature. The electron temperature can change significantly from the ambient

value, however, and because the electron-neutral collision frequency is a function of electron

temperature, the collision frequency will also vary in time. The time-varying collision frequency

also results in a time-varying ionospheric conductivity. This time-varying conductivity thus

imparts the modulation of the high power radio wave to the lower power radio wave.

The electron temperature profile was recorded as a function of time for a CW heating

wave, as shown on the left of Figure 3-2. As the CW wave propagates through the simulated

ionosphere, it can be seen that the electron temperature increases with time. The electron

temperature begins at the ambient value, which varies with height, but is approximately 200

K. At 100 µs into the simulation, the wavefront is at 75 km altitude and the peak electron

temperature is close to 500 K at 68 km. In only 400 µs, the steady-state heated electron

temperature profile is nearly attained. At 800 µs, the steady-state heated electron temperature

profile is attained with a peak electron temperature of almost 1500 K at 79 km altitude. The
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heated steady-state profile is maintained when the Joule heating term equals the energy losses

from the change in electron density and electron cooling in Eq. 3-1.
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Figure 3-2. (left) Heating of electron temperature and (right) increase in collision frequency
from CW wave heating.

The heated collision frequency profile is shown on the right of Figure 3-2. Because the

collision frequency is a function of electron temperature, many of the same observations can be

made: mainly that the heated steady-state collision frequency is nearly reached in 400 µs with

steady-state achieved in 800 µs. The ambient collision frequency profile decreases exponentially

with height and the heated profile similarly decreases with height. Because of this, the heated

steady-state collision frequency profile does not exhibit a clear and distinct maximum like the

electron temperature does. Instead, a maximum increase over ambient can be found to be

around 80 km with an increase of nearly a factor of 10.

When the high power radio wave is no longer present in the ionosphere, the Joule

heating term is zero. The electron cooling loss rates then dominate Eq. 3-1 and the electron

temperature and collision frequency quickly (~0.5 msec) return toward their ambient values.

This effect can be demonstrated well using square wave heating. On the left of Figure 3-3,

the electron temperature is shown to be recovering toward its ambient value. At 300 µs, one

square wave heating pulse has propagated through the simulation space, increasing the electron

temperature to a peak of 1300 K at 77 km. At this time, the transition from heating pulse to
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no wave is at 75 km. For the next 200 µs, there is no heating wave in the upper simulation

space because this is the ‘OFF’ period of the square wave heating. The electron temperature

recovers toward ambient, but does not reach ambient, before the next heating pulse is incident

upon the ionosphere. The next heating pulse can be seen in the 450 µs profile around 57 km

and more distinctly in the 500 µs profile between 50 and 74 km.
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Figure 3-3. (left) Cooling of electron temperature and (right) decrease in collision frequency
from 2.5 kHz Square wave heating.

The cooling collision frequency profile is shown on the right of Figure 3-2. Similar to the

electron temperature, the collision frequency decreases back toward the ambient value when

the heating pulse is not present. Also present in the collision frequency profiles at 450 µs and

500 µs are the collision frequency increases caused by the next heating pulse incident into the

simulation space.

3.2.2 Model Input Observations

With any ionospheric propagation model, the input conditions for the background,

steady-state ionosphere will have a significant effect on the results. In this work, three different

electron density profiles [Inan et al., 1992; Moore and Agrawal, 2011] along with four different

neutral density and temperature profiles [Moore and Agrawal, 2011] as shown in Figure 3-4

were examined. Electron density profile III is the most dense, followed by profile II, and profile

I is the least dense. For the neutral profiles, below 90 km where most of the heating and
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absorption occurs, profile 4 is the most dense, followed by profile 3, then 2, and profile 1 is the

least dense. The combination of these three electron density profiles and four neutral profiles

results in twelve very different background ionospheric profiles.
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Figure 3-4. (top left) Initial electron density profiles, (top right) neutral temperature profiles,
(bottom left) O2 profiles, and (bottom right) N2 profiles

The effects of varying the background neutral profile can be seen by plotting the

modulation for each neutral profile together using the same electron density profile. Using

electron density Profile III, the left panel of Figure 3-5 shows the modulated magnitude of the

probe pulse using the 2.5 kHz sine modulation scheme for the four different neutral profiles. At

steady-state, the maximum change in magnitude of -3.5 dB is similar for all four profiles. The

main difference between the traces is how much the ionosphere recovers back to ambient (the

minimum magnitude change). Neutral profile 1, the least dense, recovers the least, and has

74



a peak to peak amplitude of 1.2 dB. Neutral profile 2 recovers the next least (1.4 dB), then

profile 3 (1.6 dB), and profile 4 recovers the most (1.8 dB). The amount of recovery is in order

of the profile’s density, with profile 4 being the most dense and resulting in the largest recovery.
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Figure 3-5. Effect of neutral profile on the modulated magnitude and phase

The neutral profile has a more pronounced impact on the modulated phase, however. The

right panel of Figure 3-5 shows the modulated phase of the probe pulse for the same electron

density Profile III and the four different neutral profiles. Unlike the magnitude, the phase for

the four profiles recovers to the same phase of −5◦. The maximum phase deviation differs

significantly amongst the neutral profiles, from −20.5◦ to −12◦. Again in order of profile

density, profile 1 produces the least phase change (−12◦), followed by profile 2 (−14.6◦), then

profile 3 (−17.8◦), and then profile 4 the most (−20.5◦). Profile 1 experiences a peak to peak

phase change of 7◦ whereas profile 4 has a peak to peak change of 15.5◦, more than twice as

much.

The ambient electron density profile has a significant effect on both the modulated

magnitude and phase as shown in Figure 3-6 for the 10 kHz sine modulation scheme as

well. The attenuated magnitude in dB for electron density profile III is 2 and 3 times greater

than that of Profiles II and I, respectively. Additionally, peak to peak attenuation is 4 times

greater for Profile III over Profile II and 10 times greater for Profile III over Profile I. Similar
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observations can be made for the modulated phase. The average steady state phase difference

is about 4 times greater for Profile III than for Profile II, and 14 times greater for Profile III

than for Profile I. The peak to peak phase change is 5 times greater for Profile III than for

Profile II, and 25 times greater for Profile III than for Profile I. It is interesting to note that the

magnitude plots for Profiles I and II do not appear to reach steady state in the 5 ms shown

here, but that the phase plots do reach steady-state. This effect implies that the attenuation

rate depends on collision frequency at high collision frequencies, but the phase propagation

constant does not, at least not to the same extent.

10 kHz Sine Modulation 
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Figure 3-6. Effect of electron density profile on the modulated magnitude and phase for 10 kHz
sine wave modulation

Because this is a 1-dimensional FDTD model, spherical spreading of the transmitted

wave does not occur. Effectively, the model implements a plane wave infinite in extent in

the xy-plane propagating in the ẑ direction. This is especially important when determining

the input amplitude of the heating pulse. In the experiment of Langston and Moore [2013],

HAARP transmitted the 3.25 MHz heating pulse with an ERP of 78 dBW. Using the time

averaged Poynting flux and assuming spherical spreading, this value can be converted into

equivalent electric field amplitudes at altitudes in the D-region. These electric field values vary

with altitude in a way not captured by a 1-dimensional attenuating plane wave, and so a range

of electric field amplitudes are used to represent an ERP of 78 dBW. The calculated electric
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field amplitudes can then be used as the input amplitude at the injection height of 45 km. It is

important to note that these equivalent electric field amplitudes do not include the effects of

absorption (which are expected to be small) in the region below the calculated height, but they

do account for the spherical spreading of the wave.
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Figure 3-7. Effect of electric field source amplitude on the modulation magnitude and phase.
74 km to 96 km represent the effective electric field at these altitudes from a 78
ERP transmitter on the ground used as the source at 45 km.

As the injection height of the electric field increases, the amplitude of the input electric

field decreases. The weak electric field will therefore heat and modify the ionosphere to a

lesser extent. This will cause the 4.5 MHz probe pulse to be modulated less as the injection

altitude increases. The effect of varying the input electric field amplitude on the modulation

magnitude and phase can be seen in Figure 3-7 for the CW modulation scheme. By varying

the input electric field amplitude corresponding to spherical spreading amplitudes achieved

between 74 km to 96 km, it can be seen that the steady-state modulation magnitude

varies by approximately 1 dB. Additionally, it is seen that the steady-state phase varies by

approximately 8◦. Roughly speaking, these are variations of ~20 - 30% (in dB and degrees).

A 3-D implementation would be required to capture this physical effect properly, but such an

implementation is not possible at this point in time due to memory and run-time constraints.
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The effect of the grid step size was additionally investigated to verify that the results

would not be affected by increased resolution. With a step size of 3 meters, there are 22.2

and 30.75 grid cells per wavelength for 4.5 MHz and 3.25 MHz, respectively. If the step

size is decreased by a factor of 2 to 1.5 meters, then there are 44.4 and 61.5 grid cells

per wavelength. It was found that this substantial increase in grid density does not have

a substantial effect on the output modulated magnitude and phase. For the CW wave at

steady-state, the modulated magnitude was found to change by less than 0.03 dB and the

modulated phase by less than 0.4 degrees. These changes are minor in comparison to the

effects that the neutral density or electron density profile have been shown to have. Decreasing

the step size by half also means that the time step decreases by half from 10 ns to 5 ns. This

results in a program run-time that is approximately 4 times slower.

3.2.3 Experiment vs Simulation

The experimentally measured cross-modulated magnitude and phase for the up-going

wave for the four different modulation schemes (2.5 kHz sine, 2.5 kHz square, 10 kHz sine,

and CW) are plotted on top of each other in the top panels of Figure 3-8, which are re-plotted

versions of the data shown in Figure 2 from Langston and Moore [2013]. The bottom two

panels show the FDTD simulation results. All simulations were run using neutral profile 4 and

electron density profile 3. In these simulations, 0 dB magnitude or 0 degrees phase express

amplitude and phase of the probe pulse at the top of the D-region ionosphere relative to when

the heating pulse is not present. The x-axis represents time starting at the beginning of the

3.25 MHz ‘ON’ pulse.

Similarities between the experimental and simulation data sets are easily seen and

comparisons between the different modulation schemes are easily made. All four schemes

utilized a 78 km injection height and produce a rapid (0.5 ms) decrease in magnitude and

phase. The CW modulation runs reach steady state in about 1 ms in both data sets, and

this level appears to provide the lower boundary for all of the the modulated magnitudes and

phases. The square wave magnitude and phase precede that of the 2.5 kHz sine wave by
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Figure 3-8. Magnitude attenuated and phase change for up-going cross-modulation (top)
experiment and (bottom) simulation.

0.125 ms, a time delay corresponding to the ~0.125 ms delay between the 1/2 power points

of the square wave and sinusoidal AM modulation schemes. The peak to peak magnitude and

phase of the 10 kHz sine wave is significantly less than that of the 2.5 kHz sine and square

wave modulation. The relationship is expected to depend on the heating and cooling rates of

the ionosphere and therefore the constituents of the ionospheric plasma. It is noted that in

the simulated results, the 2.5 kHz square wave decreases in magnitude and phase at exactly

the same rate as the CW wave with the 78 km injection height, similar to the experimental

observations. If different injected field amplitudes had been used, the CW modulation scheme

would not act as a lower bound. This can be seen with the 82 km injection height for the CW
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modulation not acting as a lower bound initially when compared to the 78 km injection height

2.5 kHz square wave modulation. Because the CW wave is slightly weaker than the square

wave, the initial drop-off in magnitude and phase is slower than the square wave.

To better compare the two data sets for each individual modulation scheme, Figure 3-9

overlays the experimental and simulated cross-modulation magnitudes and phases. It is clear

that the simulations accurately reproduce the experimental observations. For the time-varying

modulation schemes, the FDTD model accurately recreates the initial decrease from ambient

in modulation magnitude and phase for the first period of heating. The timing of the peaks for

the magnitude and phase are found to closely align during the entire heating experiment for

the three time varying modulation schemes (2.5 kHz sine, 2.5 kHz square, and 10 kHz sine),

implying accurate reproduction at the modulation frequency and its harmonics.

For the modulation magnitude, the peak to peak magnitudes for the 2.5 kHz sine and

2.5 kHz square wave are seen to differ slightly, but by no more than 0.5 dB. The 10 kHz

sine wave magnitude peaks nearly perfectly align with that of experimental data. For the

modulated phase, the peak to peak phases for the 2.5 kHz sine and 2.5 kHz square wave again

differ only marginally, by less than 3◦. The 10 kHz sine wave peaks differ slightly more. The

main difference for this is because at steady-state, the phase oscillates around −17◦ for the

experimental data and −15◦ for the modeled data.

For the CW wave using the 82 km field injection amplitude, the initial drop-off in

modulated magnitude and phase is replicated well. Furthermore, the steady-state is reached

in approximately the same time and with a very similar modulated magnitude and phase.

The 78 km field injection amplitude reproduces the initial decrease better than the 82 km

field injection amplitude, however, the 78 km field injection amplitude overestimates the

steady-state modulated magnitude and phase. Because of this, the 82 km field injection

amplitude is shown here.

The accurate reproduction of the initial deviations in magnitude and phase implied

accurate modeling of the ambient conditions. The fact that the higher harmonic content of
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Figure 3-9. Magnitude attenuated and phase change for up-going cross-modulation from
experimental data and simulation results plotted together.
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the modulation or the steady state value for CW are not matched as well implies that the

specific relationship between electron temperature and electron energy loss rate could possibly

be improved.

3.2.4 Effective Doppler Shifts

The rapidly varying phase shown in Figure 3-9 can be interpreted as an equivalent Doppler

shift. Langston and Moore [2013] gave the equivalent Doppler shift velocity as:

v(t) =
−c∆f(t)
f0 +∆f(t)

with ∆f(t) =
1

2π

dψ(t)
dt (3-22)

where ψ(t) is the modulated phase, c is the speed of light, and f0 is the probe pulse frequency

which is 4.5 MHz. The experimental and modeled effective Doppler shift velocity are plotted

together in Figure 3-10. It is seen that the experimental and modeled data agree well. The

approximately +60 km/sec velocity for 2.5 kHz square and +40 km/sec velocities for 2.5

kHz sine and 10 kHz sine observed by Langston and Moore [2013] are all reproduced. This is

unsurprising because the Doppler shift velocity is a byproduct of the modulated phase which

was seen in Figure 3-9 to align very well for all four modulation schemes. It is interesting

that the 10 kHz sine modulated phase did not align well, but the effective Doppler shift

velocity does. This is because the Doppler shift is a product of the time rate of change of

the modulated phase which was accurately modeled for the 10 kHz sine modulation scheme.

Reproduction of these results validates the claim by Langston and Moore [2013] that the

rapidly varying phase is produced by HF heating and not a change in F -region reflection

height, for instance.

3.3 High Frequency Oscillations

A unique feature of this HF heating code is the ability to directly calculate the high

frequency oscillations of electron density, electron temperature, and electron-neutral collision

frequency. HF oscillations of electron density and electron temperature are shown in this

section and HF oscillations of collision frequency are shown in Section 3.4.
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Figure 3-10. Effective Doppler shift velocities on the 4.5 MHz probe signal due to ionospheric
heating using four different modulation waveforms

3.3.1 Electron Temperature Oscillations

Electron temperature is calculated through the second-order moment of the Boltzmann

equation, Eq. 3-1. The term causing the HF oscillations in the electron temperature is the

Joule heating term, J⃗ · E⃗. Because the Joule heating term is a dot product of two terms

expected to be primarily oscillating at the source frequency, the electron temperature is

expected to oscillate at simple combinations of these frequencies.

Shown in the left half of Figure 3-11 is the FFT of electron temperature at 80 km taken

from the cross-modulation simulation of 2.5 kHz sine wave amplitude modulation. The source

frequencies here are a strong 3.25 MHz wave amplitude modulated at 2.5 kHz and a weaker

4.5 MHz CW wave. There are three peak frequencies that are well over 80 dB higher in

magnitude than any other frequency and these are 1.25 MHz, 6.5 MHz, and 7.75 MHz. These

can be thought to be the mixing of 4.5 MHz with 3.25 MHz yielding 1.25 MHz and 7.75 MHz,

and the mixing of 3.25 MHz with itself to give 6.5 MHz. It is not readily seen due to the scale
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of the x-axis, but the magnitude of the electron temperature oscillation at 2.5 kHz is +35.9

dB.

It is interesting to note that there are electron temperature oscillations at 3.25 MHz and

4.5 MHz, but these are not significant. The magnitude of electron temperature oscillations

at 3.25 MHz and 4.5 MHz are -150.7 dB and -166.3 dB, which are 122.4 dB and 138 dB less

than the magnitude at 6.5 MHz.
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Figure 3-11. (left) FFT of the HF electron temperature oscillations occurring during the 2.5
kHz sine wave cross-modulation experiments. (right) Enlarged portion showing
the central oscillation around 6.5 MHz and four harmonics at 2.5 kHz intervals on
either side.

The right half of Figure 3-11 shows an enlargement of the electron temperature

oscillations around 6.5 MHz. The plot focuses on the central 6.5 MHz and first four harmonics

of 2.5 kHz, but the harmonics continue to the noise floor at -300 dB. The FFT clearly shows

that the electron temperature oscillates at the expected frequency of 6.5 MHz and mixes with

the 2.5 kHz frequency of the amplitude modulation to create numerous harmonics. These

harmonics are shown to be slightly asymmetric in magnitude with the positive going harmonics

decreasing faster in magnitude than the negative going harmonics. It is noted that harmonics

at 2.5 kHz intervals are seen around all of the dominant frequencies shown on the left of

Figure 3-11. The spectrum can be thought of as a series of delta functions convolved with
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a sinc function, a process that results from the kaiser window applied to the data set before

converting to the frequency domain.

3.3.2 Electron Density Oscillations

Electron density changes are not expected to be large for the time scales and power levels

involved during cross-modulation and thermal cubic nonlinearity experiments. Similarly, HF

oscillations of the electron density are expected to be small. In fact, some models completely

neglect the second term on the right hand side of Eq. 3-1, assuming that the change in

electron density is zero [Marshall, 2014; Moore, 2007]. More recent works have accounted

for steady-state changes in electron density [Langston and Moore, 2013; Agrawal and Moore,

2012], however they have not calculated high frequency oscillations of Ne.

The electron density was recorded at 7.5 ms into a thermal cubic nonlinearity simulation

(the specifics for which are described in Section 3.4) and compared with the initial ambient

profile in Figure 3-12. In this simulation, the source transmitted at two frequencies: ω1 = 2.74

MHz and ω2 = 5.51 MHz. The left panel shows the percent change in electron density as

compared to the ambient values. It is clear that the largest percent changes in electron density

occur between 50 and 75 km with a maximum decrease in electron density of -3.35% at 56

km. Above 75 km, the percent change in electron density is practically zero percent.
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Figure 3-12. 7.5 ms into a thermal cubic nonlinearity simulation: (left) percent change in
electron density, and (right) absolute change in electron density.
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It is interesting to compare the results of the percent change in electron density to those

of the total absolute change in electron density seen in the right panel of Figure 3-12. Below

about 75 km in the absolute change, the electron density appears not to change at all. This

is contrasted with the percent change which showed the largest variations below 75 km. This

discrepancy is due to the fact that the electron density increases nearly exponentially with

height in this region. The largest absolute change in electron density occurs at 80 km with a

change of −2.77×105 e/m3. The ambient electron density at this height is nearly 1×109 e/m3

which is nearly four orders of magnitude larger than the change. Conversely, at 56 km the

ambient electron density is 3700 e/m3 and the change in electron density was −124 e/m3,

which is a 3.35% change. So despite the total number density change being much larger at

higher altitudes, the percent change becomes negligible. This is important because many of the

nonlinear D-region interactions of interest to this work occur around 80 km. The small percent

change in electron density shows that the term involving electron density changes in Eq. 3-1

does not play a significant role in the electron temperature change.
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Figure 3-13. Electron density oscillations at 80 km altitude taken from a thermal cubic
nonlinearity simulation.
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Because the electric field transmitted is in the HF range, the electron density is expected

to oscillate at HF frequencies as well. The electron density was recorded at 80 km every

iteration up until 7.5 ms into a thermal cubic nonlinearity experiment. The first 1.5 ms were

discarded and the electron density was windowed and the FFT taken. The spectrum of electron

density oscillations can be seen in Figure 3-13. There are two strong peaks present. The

strongest is at 2.77 MHz, which is |ω2 − ω1|, with a magnitude of -74.0 dB. The next peak is

at twice the frequency at 5.54 MHz, which is 2|ω2−ω1|, with a magnitude of -155 dB. Because

the relative change in electron density is low, these HF oscillations are not thought to play a

significant role in the important nonlinear interactions for D-region HF heating experiments.

3.4 Thermal Cubic Nonlinearity

The investigation of ELF/VLF wave generation through the thermal cubic nonlinearity

(TCN) [Ginzburg, 1964; Gurevich, 1978; Barr, 1996; Kotik and Ermakova, 1998; Moore et al.,

2013] is ideally suited for this HF heating model. In the context of ELF/VLF wave generation,

most techniques require the presence of the auroral electrojet, a naturally-occurring static

current. The thermal cubic nonlinearity is electrojet independent, however, and ELF/VLF wave

generation by excitation of the thermal cubic nonlinearity represents an important means to

address the reliability of ELF/VLF wave generation.

3.4.1 Dominant Mechanism

This work aims to demonstrate that the dominant mechanism of the thermal cubic

nonlinearity for ELF/VLF wave generation involves the mixing of HF oscillations of the plasma

with the high power radio waves. In the numerical simulations presented here, ω1 is set to

2.740 MHz and ω2 is 5.510 MHz. With these frequency choices, the expected VLF wave

generation frequency, |ω2 − 2ω1|, is 30 kHz, the dominant collision frequency oscillation

suggested by Gurevich [1978] and Kotik and Ermakova [1998], 2ω1, is 5.48 MHz, and the

dominant collision frequency oscillation suggested by Moore et al. [2013], |ω2 − ω1|, is 2.77

MHz. This FDTD model includes the core physics to distinguish which frequency content

dominates the interaction.
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The simulation space used here is the same as that used in the HF cross modulation

simulations: 3 m grid-size, 10 ns time-step, vertical magnetic field, ionospheric plasma

between 50 and 100 km, injection source at 45 km, and an absorbing boundary conditions on

both ends of the grid. The simulation was run for 7.5 ms which is 225 periods at 30 kHz. It

is noted though that the HF phasing effects present when splitting HAARP in a North/South

versus East/West configuration are not included [Moore et al., 2013].

The electric field, collision frequency, and plasma current density were all recorded every

iteration at 80 km altitude and the frequency spectrum of these can be seen in Figure 3-14.

The ionosphere was allowed to reach steady-state which was shown in Section 3.2.1 to be less

than 1 ms and values of the electric field, collision frequency, and plasma current density after

1.5 ms into the simulation were used in these plots. These values were windowed with a Kaiser

window with beta equal to 32 in order to reduce the noise floor. The FFT was then taken.

The top left plot in Figure 3-14 shows the spectrum of the electric field. Strong peaks of

-18.7 dB and -18.0 dB are seen at 2.74 MHz and 5.51 MHz, as expected because these are the

source frequencies, ω1 and ω2. The next strongest peak is at 30 kHz with a magnitude of -98.4

dB, or 80 dB lower than the source frequencies. An enlargement of the electric field spectrum

between DC and 100 kHz is shown in the top right plot. The 30 kHz peak is clearly shown

to be about 200 dB above the numerical noise floor. The next strongest peak in the electric

field is at 8.28 MHz at -105.2 dB which is close to 90 dB lower than the source peaks and 7

dB lower than the 30 kHz peak. The 8.28 MHz peak is equal to |2ω2 − ω1| and is created by

collision frequency oscillations at |ω2 − ω1|, 2.77 MHz, mixing with the plasma current density

at ω2, 5.51 MHz. The 8.28 MHz peak is also created by a collision frequency oscillation at

2|ω2 − ω1|, 5.54 MHz, mixing with the plasma current density at ω1, 2.74 MHz. This scenario

most likely creates a weaker electric field than the first due to the weaker oscillation of the

collision frequency at 2|ω2 − ω1| versus |ω2 − ω1|. The last peak identified in the electric field

plot is at 2.8 MHz with a magnitude of -167.9 dB or nearly 150 dB lower than the source
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Figure 3-14. (top left) Electric field oscillations showing strong peaks at ω1, ω2, and the VLF
generated frequency, 30 kHz, (top right) an enlargement of the electric field
oscillations clearly showing the 30 kHz peak, (middle left) collision frequency
oscillations showing a dominant peak at |ω2 − ω1|, (middle right) an enlargement
of the collision frequency oscillations showing the peak at 2ω1 is significantly low,
(bottom left) current density oscillations showing strong peaks at ω1 and ω2,
(bottom right) electric field oscillations from a linear model showing no
oscillations at 30 kHz. 89



frequencies and 70 dB lower at than 30 kHz. The 2.8 MHz peak is a product of the collision

frequency oscillation at |ω2−ω1|, 2.77 MHz, mixing with the plasma current density at 30 kHz.

The middle left plot of Figure 3-14 shows the collision frequency spectrum. The strongest

peak is at |ω2 − ω1|, 2.77 MHz, with a magnitude of 69.7 dB. This is the collision frequency

peak that Moore et al. [2013] determined to be the most strongly involved in the thermal

cubic nonlinearity, and the creation of the 30 kHz peak here. The next strongest peak is at

2|ω2 − ω1|, 5.54 MHz, with a magnitude of -7.9 dB, or close to 80 dB lower than the peak at

|ω2 − ω1|. As mentioned above, this peak also plays a role in the creation of 8.28 MHz electric

field oscillations, but because it is 80 dB lower than the other collision frequency source, it is

expected to play a substantially smaller role.

The middle right panel shows an enlargement of collision frequency oscillations between

5.4 MHz and 5.6 MHz. In this plot it can be seen that collision frequency oscillations at ω2

are 60 dB lower than at 2|ω2 − ω1|. Also, it can be seen that collision frequency oscillations

at 2ω1, 5.48 MHz, the peak suggested by Gurevich [1978] and Kotik and Ermakova [1998] to

be the primary source of the thermal cubic nonlinearity, has a magnitude of -172.6 dB. This

is 242.3 dB lower than the peak at |ω2 − ω1|, the peak determined by Moore et al. [2013]. It

is therefore concluded in this work, in agreement with Moore et al. [2013], that the primary

mechanism behind the thermal cubic nonlinearity is collision frequency oscillations at |ω2 − ω1|

mixing with plasma current density oscillations at ω1. This conclusion applies only for the case

of a vertical magnetic field, however, as discussed by Moore et al. [2013].

The bottom left plot of 3-14 shows the plasma current density spectrum. The strongest

peaks are, as expected, at the source frequencies, ω1 and ω2, with magnitudes of -141.2 dB

and -143.1 dB, which is within 2 dB of each other. The next strongest peaks are at 30 kHz

and 8.28 MHz with magnitudes of -216.8 dB and -221.5 dB, respectively. These are about 80

dB lower than the the source frequency peaks. Numerous other peaks 140 dB to 200 dB lower

than the peaks at ω1 and ω2 are identified in the plot.
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The bottom right plot of 3-14 shows the electric field of a linear FDTD simulation of

thermal cubic nonlinearity. The strong peaks at ω1 and ω2 are still present, as expected,

because these are the input source frequencies. There are no peaks observed at 30 kHz, 8.28

MHz, or 2.8 MHz, because this is a linear model and those frequencies are caused by nonlinear

interactions. This is further verification of the nonlinear HF heating FDTD model proving that

the peaks seen in the nonlinear model are caused by nonlinear interactions in the simulated

ionosphere.

Lastly, we note that the electric field value shown in the top-right panel of Figure 3-14

corresponds to ~30 dB fT, a value that is on the correct order of magnitude when compared

with observations presented near HAARP by Moore et al. [2013].

3.4.2 Generated Frequency Dependence

The amplitude of the ELF/VLF generated wave using the thermal cubic nonlinearity is

investigated here. Eleven simulations were run, varying the source frequency of ω1, so that the

generated ELF/VLF frequency ranged from 1 kHz to 35 kHz in steps of 1 kHz up to 5 kHz and

steps of 5 kHz up to 35 kHz. The source frequencies for ω1 were: 2.7545 MHz, 2.7540 MHz,

2.7535 MHz, 2.7530 MHz, 2.7525 MHz, 2.7500 MHz, 2.7475 MHz, 2.7450 MHz, 2.7425 MHz,

2.7400 MHz, and 2.7375 MHz. ω2 remained constant at 5.51 MHz.

The electric field of each simulation was recorded every iteration at 46 km. Similar to

above, the simulations were run for 7.5 ms and the first 1.5 ms were discarded. The electric

field was then windowed using a kaiser window and the FFT was taken. The magnitude of

the eleven generated ELF/VLF waves are shown in Figure 3-15. An altitude of 46 km was

chosen in order to more accurately represent the amplitude of the wave injected into the

earth-ionosphere waveguide. This can be seen to be significant when comparing the peak at

30 kHz which is 17.6 dB lower at 46 km (-116 dB) than it was at 80 km (-98.4 dB) as seen in

Figure 3-14.

The thermal cubic nonlinearity produces stronger magnitude VLF waves at lower

frequencies until a peak is reached near 5 kHz. The largest magnitude frequency produced
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Figure 3-15. VLF generated frequencies using the thermal cubic nonlinearity recorded at 46 km
altitude. The amplitude of the generated wave is seen to decrease with increasing
frequency.

in these simulations was at 5 kHz with a magnitude of -97.5 dB. The magnitude below 5 kHz

slowly decreases down to a minimum at 1 kHz (-102.9 dB) but this is only 5 dB lower than the

peak at 5 kHz. There is a much more substantial decrease in peak magnitude when increasing

in frequency. The magnitude at 5 kHz of -97.5 dB is 22.5 dB stronger than the magnitude

at 35 kHz (-120.0 dB). It is also noted that between 5 kHz and 15 kHz that the magnitude

decreases slowly. The peak at 15 kHz (-101.5 dB) is actually larger than the peak at 1 kHz

(-102.9 dB). Beyond 15 kHz, the magnitude drops by 4 dB to 6 dB every 5 kHz. From these

simulations and utilizing these ambient profiles, it is seen that the thermal cubic nonlinearity is

optimal to use below 15 kHz.

These simulation results seem to disagree with observations by Moore et al. [2013], where

the ELF/VLF observations near 5 kHz were not as detectable as those near 20 kHz. This effect

may result from propagation effects similar to “beat-wave” heating, where the spatial offset of

the HAARP sub-arrays produces a phasing effect in the sky [e.g., Moore et al., 2012; Cohen
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et al., 2012b] that results in a strong dependence on modulation frequency observed on the

ground benefiting the higher frequencies.

The nonlinear HF heating FDTD model developed in this chapter implemented the 1st-

and 2nd-order moments of the Boltzmann equation derived neglecting the convective derivative

to simulate cross-modulation and thermal cubic nonlinearity experiments. Additional terms are

present in both the 1st- and 2nd-order moments when accounting for the convective derivative

and these terms are investigated for VLF heating in Chapter 4.
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CHAPTER 4
PLASMA FDTD INCLUDING CONVECTION AND CONDUCTION

Previous simulations presented in this dissertation have utilized versions of the 1st- and

2nd-order moments of the Boltzmann equation that neglect convection and heat conduction.

In this chapter, the 1st- and 2nd-order moments of the Boltzmann equation are derived

accounting for convection and conduction. Using a 3-D nonlinear VLF heating model, each

convective and conductive term in the 1st- and 2nd-order moments of the Boltzmann equation

is analyzed to determine its importance to ionospheric heating. Particular attention is focused

on the form of Joule heating in the 2nd-order moment and the impact of the form on HF

heating during cross-modulation simulations

4.1 Moments of the Boltzmann Equation

Kinetic theory tracks the number density of particles with a velocity v⃗ in space and time

through the velocity distribution function, f(r⃗, v⃗, t). Each species, denoted by a subscript s,

is tracked through an individual velocity distribution function, fs(r⃗, v⃗, t). For the simulations

presented in this work, only electrons are tracked, and the subscript s is dropped. The velocity

distribution function depends on seven variables: time (t), three spatial coordinates (x, y,

z), and three velocity components (vx, vy, vz). The Boltzmann Equation (Eq. 4-1) describes

the dynamic response of each plasma species to to an external force [Uman, 1964, p. 34,

Bittencourt, 2004, p. 195].

∂

∂t
f(r⃗, v⃗, t) = − (v⃗ · ∇) f(r⃗, v⃗, t)−

[(
F⃗

m

)
· ∇v

]
f(r⃗, v⃗, t) +

∂f(r⃗, v⃗, t)

∂t

∣∣∣∣
coll

(4-1)

where:

r⃗ = xx̂ + yŷ + zẑ (4-2)

v⃗ = vxx̂ + vyŷ + vzẑ (4-3)

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ (4-4)
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∇v =
∂

∂vx
x̂ +

∂

∂vy
ŷ +

∂

∂vz
ẑ (4-5)

The first term on the right describes the change in number density of particles with

velocity v⃗ entering or exiting the differential volume. It is known as the convective derivative,

and it is sometimes neglected. The second term on the right describes the change in number

density of particles with velocity v⃗ due to the external force acting on them and only includes

particles already inside the differential volume. The final term on the right describes the

collisional effects of the plasma, including changes to species number density through chemical

reactions, and changes in species velocity by collisions with neutral particles, for instance.

Solving the Boltzmann equation over all space allows the calculation of the plasma current

density for the particular species. The total plasma current density can then be coupled with

Maxwell’s Equations in order to solve for wave propagation. This process is then repeated

throughout time. This is an unmanageable process for the grid size and required time steps of

this case, and it is more practical to solve for the moments of the Boltzmann Equation.

Moments of the Boltzmann Equation are derived by multiplying the Boltzmann Equation

by the desired property and integrating over velocity. The 0th-, 1st-, and 2nd-order moments

presented here are so named because they require the nth power of velocity.

The 0th-order moment of the Boltzmann Equation results in the continuity equation

[Bittencourt, 2004, p. 197]:

∂ρm
∂t

+∇ · ρmu⃗ = S (4-6)

where ρm represents the mass density, u⃗ is the average velocity, and S = δρm
δt

|coll which

represents the rate per unit volume that particles are produced or lost as a result of collisions.

In the absence of interactions creating production or loss of particles, S = 0. When one sums

over all species, the sum of S = 0, because matter cannot be created or destroyed. Multiplying

Eq. 4-6 by the particle charge and dividing by the particle mass leads to the charge continuity

equation [Bittencourt, 2004, p. 198]:
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∂ρ

∂t
= −∇ · J⃗ . (4-7)

where ρ is charge density and J⃗ is charge current density. It is noted that n = ρm
m

, ρ = nq,

and J⃗ = ρu⃗ where n is the species number density, m is the species mass, and q is the species

charge. Similarly, Eq. 4-7 has been summed over all species so that the collisional effects sum

to zero.

The 1st-order moment of the Boltzmann Equation results in the momentum transfer

equation [Bittencourt, 2004, p. 202]:

ρm
Du⃗

Dt
= nq

(
E⃗ + u⃗× B⃗

)
+ ρmg⃗ −∇ · P + A⃗− u⃗S (4-8)

where D
Dt

= ∂
∂t
+ u⃗ · ∇ is the total time derivative operator corresponding to the time variation

observed in a reference frame moving with the mean velocity u⃗ which includes the convective

derivative, g⃗ is the acceleration of gravity, P accounts for the pressure forces including

viscosity, and A⃗ = δ(ρmu⃗)
δt

|coll. Due to the large number of collisions in the D-region ionosphere,

it is a good approximation that the off-diagonal, viscosity terms of P are relatively unimportant

and the pressure term is isotropic. The pressure term may be approximated as P = NeκBTe.

Multiplying by the electron charge and dividing by the electron mass, the 1st-order moment

may be restated as:

∂

∂t
J⃗ =

q2eNe

me

E⃗ +
qeµ0

me

J⃗ × H⃗ + qeNeg⃗ − νJ⃗ − qeNeκB
me

∇Te −
qeκBTe
me

∇Ne

− J⃗

qeNe

(
∇ · J⃗

)
− 1

qeNe

(
J⃗ · ∇

)
J⃗ +

J⃗

qeN2
e

(
J⃗ · ∇Ne

) (4-9)

where J⃗ is the plasma current density, qe, Ne, me, and Te are the electron charge, density,

mass, and temperature, H⃗ is the total magnetic field including the wave and background field,

and ν is the effective collision frequency.

96



To better understand the derivation from Eq. 4-8 to Eq. 4-9, the source of each term

in Eq. 4-9 will be explained. The four terms of ∂J⃗
∂t

, − J⃗
qeNe

(
∇ · J⃗

)
, − 1

qeNe

(
J⃗ · ∇

)
J⃗ , and

+ J⃗
qeN2

e

(
J⃗ · ∇Ne

)
result from the total time derivative operator, ρmDu⃗

Dt
, with the last three

terms explicitly from the convective derivative, u⃗ · ∇. The two terms, q2eNe

me
E⃗ and qeµ0

me
J⃗ × H⃗,

are from the Lorentz force, nq
(
E⃗ + u⃗× B⃗

)
. The gravity term, qeNeg⃗, is readily apparent

from ρmg⃗. There are two pressure terms, − qeNeκB

me
∇Te and − qeκBTe

me
∇Ne, that result from

−∇ · P . The final term to mention is −νJ⃗ which results from −u⃗S. The definitions of Term

# as shown in Eqs. 4-10 to 4-16 are used throughout this chapter.

Term 1 =
qeµ0

me

J⃗ × H⃗w (4-10)

Term 2 = −qeNeκB
me

∇Te (4-11)

Term 3 = −qeTeκB
me

∇Ne (4-12)

Term 4 = − J⃗

qeNe

(
∇ · J⃗

)
(4-13)

Term 5 = − 1

qeNe

(
J⃗ · ∇

)
J⃗ (4-14)

Term 6 =
J⃗

qeN2
e

(
J⃗ · ∇Ne

)
(4-15)

Term 7 = qeNeg⃗ (4-16)

It is readily seen that if the convective derivative is neglected, pressure is neglected, the

wave magnetic field interaction is neglected, and the force of gravity is neglected, we obtain

the 1st-order moment used in Chapter 3:
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∂

∂t
J⃗ =

q2eNe

me

E⃗ +
qeµ0

me

J⃗ × H⃗0 − νJ⃗. (4-17)

The 2nd-order moment of the Boltzmann Equation is the energy transport equation

[Bittencourt, 2004, p. 206]:

D

Dt

(
3p

2

)
+

3p

2
∇ · u⃗+ (P · ∇) · u⃗+∇ · q⃗ =M − u⃗ · A⃗+

1

2
u2S (4-18)

where p is the isotropic pressure, M is an energy loss rate representing the rate of energy

density changes due to collisions, and q⃗ is the heat flux vector. The 2nd-order moment can be

written in terms of electron temperature:

3

2
NeκB

∂Te
∂t

=
νme

q2eNe

(
J⃗ · J⃗

)
− 3κB

2qe

(
J⃗ · ∇Te

)
+
κBTe
qeNe

(
J⃗ · ∇Ne

)
+

me

2q2eN
2
e

(
J⃗ · J⃗

) ∂Ne

∂t

∣∣∣∣
coll

− 3

2
κBTe

∂Ne

∂t

∣∣∣∣
coll

− κBTe
qe

(
∇ · J⃗

)
−∇ · q⃗ − L(Ne, Te, TN)

(4-19)

where q⃗ is thermal heat flow, or conduction, and is approximated as [Bittencourt, 2004]:

q⃗ =
Neκ

2
BTe

meν
∇Te. (4-20)

Eq. 4-19 is the 2nd-order moment of the Boltzmann Equation including convection and

conduction. In the D-region ionosphere, the pressure terms are considered isotropic and q⃗ (Eq.

4-20) which represents thermal heat flow, or conduction, within the plasma is approximated.

Each term in Eq. 4-19 is now correlated to a term in Eq. 4-18 to better understand the

derivation. The two terms, 3
2
NeκB

∂Te

∂t
and νme

q2eNe

(
J⃗ · J⃗

)
, result from the total time derivative

operator term, D
Dt

(
3p
2

)
. The two terms, −3κB

2qe

(
J⃗ · ∇Te

)
and +κBTe

qeNe

(
J⃗ · ∇Ne

)
, result from

+(P · ∇) · u⃗. The two terms, + me

2q2eN
2
e

(
J⃗ · J⃗

)
∂Ne

∂t

∣∣
coll

and −3
2
κBTe

∂Ne

∂t

∣∣
coll

, result from

+1
2
u2S. The term −κBTe

qe

(
∇ · J⃗

)
results from +3p

2
∇ · u⃗. The ∇ · q⃗ term remains the same.

The loss rates, L(Ne, Te, TN), are from M .

If one neglects convection and heat conduction, the 2nd-order moment reduces to:
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3

2
NeκB

∂Te
∂t

=
νme

q2eNe

J⃗ · J⃗ − 3

2
κBTe

∂Ne

∂t
− L(Ne, Te, Tn) (4-21)

The first term on the right, the Joule heating term, is different than the version of the

2nd-order moment used in the nonlinear HF heating model in Chapter 3. If one approximates

that J⃗ = σ||E⃗, which is true in the isotropic case, then the following relationship holds:

νme

q2eNe

(J⃗ · J⃗) = J⃗ · E⃗. (4-22)

The equality of these two terms is valid even in the anisotropic case when the collision

frequency is much greater than the wave frequency. With this assumption, the 2nd-order

moment is:
3

2
NeκB

∂Te
∂t

= J⃗ · E⃗ − 3

2
κBTe

∂Ne

∂t
− L(Ne, Te, Tn) (4-23)

which is the version used in Chapter 3 of this work, and in many other works [e.g., Huxley and

Ratcliffe, 1949; Stubbe and Kopka, 1977; Tomko et al., 1980; Rietveld et al., 1989; Rodriguez,

1994; Moore, 2007; Moore and Agrawal, 2011; Marshall, 2014].

4.2 VLF Heating

To evaluate the relative importance of each term in the 1st- and 2nd-order moments of

the Boltzmann Equation, a 3-D nonlinear FDTD model was created. This model is similar to

the HF heating model presented in Chapter 3 in that they both allow for a temporally- and

spatially-varying electron temperature, electron density, and electron-neutral collision frequency.

The main differences between the models are that this model simulates 3-D propagation, and

implements the 1st- and 2nd-order moments of the Boltzmann Equation including convection

and conduction. The 1-D model of Chapter 3 utilized small grid cells and small time steps to

simulate HF propagation. The 3-D version is limited in spatial step size and time step size for

run-time considerations. We therefore limit the frequency to the VLF range. The spatial step

in the 3-D model here is to 500 m, which provides 25 grid-cells per wavelength at 24 kHz. The

simulation space is 150 km x 150 km x 100 km vertical. The stability factor is maintained at

the same limit as a traditional 3-D FDTD free-space implementation, 1/
√
3.
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A broadside VLF source centered in the xy-plane at 30 km altitude is used in this work

instead of a vertical monopole at ground level to represent a Navy VLF transmitter. The VLF

source used here was chosen mainly to limit the required grid dimensions as the broadside VLF

source radiates vertically. A vertical monopole radiates in more of a doughnut pattern with

little power directly above the source. This would require a much larger grid in order to analyze

the VLF heating effects on the ionosphere. For the purpose of analyzing the effects of the 1st-

and 2nd-order moments from VLF heating, the broadside VLF source was deemed reasonable.

This model utilizes a more complicated 13-step update loop.

1. Update D⃗eff using H⃗: Eq. 1-1

2. Update E⃗ using D⃗eff : Linear Method 2

3. Calculate J⃗ using D⃗eff and E⃗: Eq. 3-20

4. Update Te: Eq. 4-19

5. Calculate νav using Te: Eqs. 3-16 to 3-18

6. Calculate νeff using νav: Eq. 3-19

7. Update Ne using the chemistry model: Eqs. 3-12 to 3-15

8. Calculate the six additional terms in the 1st-order moment: Eqs. 4-10 to 4-15

9. Add the six additional terms to the plasma current density

10. Recalculate E⃗ using the plasma current density

11. Recalculate Te, νav, νeff , and Ne: Repeat Steps 4 to 7

12. Calculate new update coefficients for step 2

13. Update H⃗ using E⃗: Eq. 1-2

Steps 1 through 7 in the VLF heating model are the same as the HF heating model

in Chapter 3. In Step 3, the plasma current density is calculated, but this plasma current

density is the simplified version of Eq. 4-17. Steps 8 and 9 are necessary to update the plasma

current density with the additional terms present in the 1st-order moment, Eq. 4-9. To factor

the plasma current density with all terms included into the wave propagation, the electric
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field is recalculated in Step 10. The 2nd-order moment (Eq. 4-19) is implemented directly

when updating the electron temperature and no additional steps are required to include the

additional terms in this moment of the Boltzmann Equation.

4.2.1 First-Order Moment

The 1st-order moment of the Boltzmann Equation was presented in Eq. 4-9. There are

7 terms (Eqs. 4-10 to 4-16) that were assumed to be negligible in the form of the 1st-order

moment presented in Eq. 4-17 that was used in Chapters 2 and 3. In the absence of an

external field, the plasma current density is zero. To numerically simulate this, the vertical,

ambient components of Term 2 (Eq. 4-11) and Term 3 (Eq. 4-12) are set equal and opposite

to the vertical component of Term 7 (Eq. 4-16):

qeNe,0gz ẑ = +
qeNeκB
me

∂Te,0
∂z

ẑ +
qeTeκB
me

∂Ne,0

∂z
ẑ ≡ V⃗ (4-24)

where gz is the vertical acceleration due to gravity, Te,0 is the ambient electron temperature,

Ne,0 is the ambient electron density, and V⃗ is defined as the ambient balance term. Physically

this represents that the force of gravity is balanced out by the internal pressure of the plasma

due to the vertical ambient temperature and ambient electron density gradients. The 1st-order

moment including the ambient balance term is:

∂

∂t
J⃗ =

q2eNe

m
E⃗ +

qeµ0

me

J⃗ × H⃗ − νJ⃗ − qeNeκB
me

∇Te −
qeκBTe
m

∇Ne

− J⃗

qeNe

(
∇ · J⃗

)
− 1

qeNe

(
J⃗ · ∇

)
J⃗ +

J⃗

qeN2
e

(
J⃗ · ∇Ne

)
+ V⃗ .

(4-25)

In the simulations shown here, Terms 1 to 6 are calculated individually and added to the

total plasma current density every iteration. This allows us to save each term separately to

compare the relative magnitude of each term.

The impact on the plasma current density for Terms 1 through 6 is shown in Figure 4-1

for the x̂-component, and Figure 4-3 for the ẑ-component. For these figures, the VLF heating

simulation utilized the 1st- and 2nd-order moments, as shown in Eqs. 4-9 and 4-19. The plots
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labeled ‘Difference’ in Figures 4-1 and 4-3 calculate the difference in the plasma current density

between simulations using the 1st-order moment, Eq. 4-9, and the simplified 1st-order moment,

Eq. 4-17. All of the figures were created from the same iteration of the FDTD simulation,

capturing these components and additional terms at one instant in time.

Figure 4-1 shows the x̂-components of the plasma current density, and the top left panel

shows the Jx component of the plasma current density calculated using Eq. 4-9. The strongest

region of the plasma current density is directly above the source in the 80 km to 85 km region

with a peak magnitude around 4 × 10−7 A/m3. In this plot and the other panels, there is a

plasma current density present below 75 km, but it is orders of magnitude smaller and unable

to be resolved well in the color scheme shown. The absolute value of the plasma current

density is plotted in logarithmic scale in Figure 4-2. The left panel shows Jx and the right

panel shows Jz. Below 75 km, the plasma current density decreases in magnitude rapidly. The

plasma current density at 60 km altitude is 5 orders of magnitude smaller than at 78 km. It

is difficult to resolve this range in the linear color scheme shown in Figures 4-1 and 4-3 so the

color scale is set to best show the plasma current density above 75 km altitude.

The top right panel of Figure 4-1 shows the difference in Jx between two simulations, one

utilizing Eq. 4-9 and the other using the simplified version, Eq. 4-17. Both simulations utilize

the 2nd-order moment, Eq. 4-19. This difference shows how the additional terms in Eq. 4-9

accumulate and affect the plasma current density. It can be seen that the difference between

the simulations is two orders of magnitude less than the peak plasma current density shown in

the top left panel.

The Term 1 plot has the largest peak magnitude of any of the additional terms with a

peak of 1.5 × 10−11 A/m3 at around 80 km altitude. This term is a product of the plasma

current density and wave magnetic field, two field values expected to be oscillating at the

source frequency. It appears that the spatial frequency of Term 1 is twice that of the plasma

current density shown in the top left plot. This means that Term 1 is predominantly varying

spatially at twice the source frequency, 48 kHz. This term is opposite in sign, or odd, across
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Figure 4-1. x̂-components of the additional terms in Eq. 4-9 for 24 kHz VLF heating
simulation using Eq. 4-19.
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Figure 4-2. Absolute value of the plasma current density using Eq. 4-9 in logarithmic scale
(left) Jx (right) Jz .

the source center. The explicit evaluation of Term 1 is x̂ qeµ0

me
(JyHz − JzHy) where Jy and Hy

are even across the source center and Jz and Hz are odd across the source center. This results

in even field values multiplied by odd field values causing Term 1 to be odd, as well.

Terms 2 and 3 are similar to Term 1 in that the region of strongest intensity is between

75 km to 85 km with a much weaker strength outside of this region. Term 2 has a peak

magnitude of 2.5 × 10−12 A/m3 and Term 3 is significantly weaker with a peak magnitude

of 1.5 × 10−16 A/m3. The electron temperature heats and cools on the order of the VLF

wavelength causing large temperature gradients, as seen from the strength of Term 2.

Conversely, the electron density changes much more slowly so the electron density gradient

in Term 3 is much smaller. Term 2 also appears to be varying spatially at twice the source

frequency whereas Term 3 appears to be DC in nature. Similar to Term 1, Terms 2 and

3 appear odd across the source center. In this simulation, electron temperature heating is

strongest directly above the source and decreases radially away. The electron density change

is also strongest directly above the source and decreases in value radially outward. Therefore,

both the electron temperature and electron density are even functions across the source center.

Terms 2 and 3 take the gradient of these plasma parameters. The gradient of an even function

is an odd function resulting in Terms 2 and 3 being odd across the source center.

104



Terms 4, 5, and 6 all have peak magnitudes of around 1 × 10−13 A/m3 which is 6 orders

of magnitude less than the peak plasma current density and 2 orders of magnitude less than

the peak strength of Term 1. Similar to the previous terms, Terms 4, 5, and 6 are strongest in

the region between 75 km to 85 km. Also, Terms 4, 5, and 6 all involve a product of J⃗ mixing

with another J⃗ which causes them all to appear to be spatially varying at twice the source

frequency. Like the previous three terms, Terms 4, 5, and 6 appear odd across the source

center. This is because the plasma current density is even and the divergence of the plasma

current density results in these terms being odd.

The ŷ-components of the plasma current density produce similar results to the

x̂-components so we progress to the ẑ-components now.

Figure 4-3 shows the ẑ-components of the plasma current density and the top left panel

shows the Jz component of the plasma current density calculated using Eq. 4-9. Unlike the x̂-

and ŷ-components, the strongest region of Jz does not occur directly over the source. Instead

the strongest region is offset 30 km horizontally from the source center and is located at an

altitude of 80 km. Jz has a peak magnitude of 1.5× 10−7 A/m3 which is on the same order of

magnitude as Jx. Jz is odd across the source center due to the vertical magnetic field.

The top right panel of Figure 4-3 shows the difference in Jz between two simulations,

one utilizing Eq. 4-9 and the other using the simplified version, Eq. 4-17. The peak difference

between these two simulations is 6× 10−10 A/m3 which is about three orders of magnitude less

than the peak plasma current density seen in the top left panel. The difference is seen to be

odd across the source center again due to the vertical magnetic field.

Term 1 was the strongest additional term for the x̂-component of the plasma current

density and for the ẑ-component, it is nearly the strongest with a peak field strength of

1.2 × 10−10 A/m3. Term 1 varies spatially at twice the source frequency and is even across

the source center, unlike Term 1 in the x̂-component. The explicit evaluation of Term 1 is

ẑ qeµ0

me
(JxHy − JyHx) where Jx, Jy, Hx, and Hy are all even across the source center resulting

in Term 1 to be even as well.
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Figure 4-3. ẑ-components of the additional terms in Eq. 4-9 for 24 kHz VLF heating
simulation using Eq. 4-19.
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Term 2 is slightly more significant with a peak field strength of 3.5 × 10−10 A/m3 and

appears to be DC in nature due to the large peak in electron temperature at 80 km altitude.

There are striations in Term 2 around 76 km which are additional pressure gradients in the

plasma current density being formed.

Term 3 is significant for the Jz component of the plasma current density with a peak field

strength of −3.5 × 10−10 A/m3. This is the same field strength but opposite in sign as Term

2. These two terms will not completely cancel each other out though. Term 2 peaks just above

80 km whereas Term 3 peaks just below 80 km. This may be the reason for the inversion in

field strength seen in the ‘Difference’ panel around 80 km in altitude.

Terms 4, 5, and 6 have similar peak field strengths of around 1 × 10−13 A/m3. These

terms again vary spatially at twice the source frequency and have the strongest field strength

between 75 km to 85 km. Unlike the x̂-components, the ẑ-components of Terms 4, 5, and 6

are even across the source center. This is because Jz is odd across the source center and the

divergence of an odd function is even.

The impact over time on the plasma current density of the six additional terms in Eq.

4-9 can be shown by taking the magnitude of plasma current density oscillations. During a

VLF heating simulation, the plasma current density and the six additional terms are recorded

at every grid cell every iteration. After the simulation, the FFT of the recorded field values is

taken at every grid cell and the magnitude at a particular frequency is plotted.

Shown in the top left panel of Figure 4-4 is the magnitude of the x̂-component of the

plasma current density at 24 kHz. The strongest region of Jx oscillating at 24 kHz is between

80 km and 90 km altitude with a peak magnitude of -151 dB. The top right panel shows the

ẑ-component of the plasma current density at 24 kHz. Oscillations of Jz are symmetric about

the source center and the strongest region of 24 kHz oscillation is offset 25 km horizontally

from the source center with a peak magnitude of -162 dB.

In Figure 4-4, the middle panels show the 24 kHz magnitude and the bottom panels show

the 48 kHz magnitude of the sum of the six additional terms in the 1st-order moment of the
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Figure 4-4. Magnitude of: (top left) x̂-component of the plasma current density at 24 kHz,
(top right) ẑ-component of the plasma current density at 24 kHz, (middle left)
x̂-component of Terms 1 to 6 of the plasma current density at 24 kHz, (middle
right) ẑ-component of Terms 1 to 6 of the plasma current density at 24 kHz,
(bottom left) x̂-component of Terms 1 to 6 of the plasma current density at 48
kHz, (bottom right) ẑ-component of Terms 1 to 6 of the plasma current density at
48 kHz
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Boltzmann Equation with the x̂-components on the left and the ẑ-components on the right.

It is noted that the scales for these four panels are the same and are 100 dB less than that

of the top two panels. The additional terms appear to have the largest impact in the region

between 75 km to 80 km. The x̂-components of the additional terms have a null above the

source center unlike the total plasma current density shown in the top left panel. Also, the

ẑ-components of the additional terms do not have a null above the source in contrast to Jz

shown in the top right panel. Terms 1 to 6 contribute to the overall plasma current density,

but the contributions to the magnitude shown here at 24 kHz are at least 70 dB less than the

total plasma current density oscillations at 24 kHz shown in the top two panels.

4.2.2 Second-Order Moment

Three versions of the 2nd-order moment of the Boltzmann Equation have been provided.

The first is Eq. 4-19 which is the 2nd-order moment derived utilizing the convective derivative.

The second version assumes that conduction and the pressure gradient terms are negligible and

was given in Eq. 4-21. The third version makes the same assumptions as the second version,

but also assumes that ν ≫ ω to change the Joule heating term and was given in Eq. 4-23.

These three equations for the electron temperature update were implemented in three VLF

FDTD heating models. The only difference between the models was the update equation for

the electron temperature. All models implemented the 1st-order moment of the Boltzmann

Equation, Eq. 4-9.

The electron temperature was recorded when the ionospheric heating reached steady-state

and is shown in Figure 4-5. Panels a, b, and c show the electron temperature for the three

models using Eq. 4-19, Eq. 4-21, and Eq. 4-23, respectively, at the same iteration. Shown is

a 2-D slice of the 3-D grid taken at the midpoint of the x̂-axis, with 50 km in the ŷ-direction

on either side of the source, and from 50 km to 100 km in altitude. The location of the peak

heated region around 77 km is the same in the three simulations. Comparing panels a, b, and

c, it is clear that the heated region is larger in simulations utilizing Eq. 4-23, panel c. In all

three simulations, the electron temperature quickly returns toward ambient past the heated
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region. Also, the heating wave can be seen in the electron temperature below 70 km altitude.

This is because the electron temperature heats and cools in the span of the VLF wavelength.

Panel d shows the difference in electron temperature between the simulation using

Eq. 4-21 (panel b) and that using Eq. 4-19 (panel a). It is noted that the color scale for

this plot is in milliKelvin, whereas all of the other plots shown are in Kelvin. It is seen that

the maximum difference in electron temperature between these two simulations is only 8

mK, whereas the peak electron temperature in these simulations is around 950 K. In effect,

these two simulations produce nearly identical heated electron temperatures. It is therefore

concluded that the additional terms in Eq. 4-19 are indeed negligible for CW VLF heating of

the D-region ionosphere. An explicit calculation of each term is not needed, because when

utilizing all terms, the effect on electron temperature is negligible. Nevertheless, it may still be

the case that these terms affect the way multiple beams interact in the ionosphere in important

ways.

Panel e shows the difference in electron temperature using Eq. 4-23 (panel c) and using

Eq. 4-21 (panel b). The only difference in these equations is the Joule heating term. It is seen

that the electron temperature is substantially different in these two simulations. There is a

peak difference of nearly 238 K. Panel f shows the percent difference of the heated electron

temperature calculated as Eq.4−23−Eq.4−21
Eq.4−21

× 100. The peak percent difference in electron

temperature is 43.5% at 80 km altitude. This represents a significant difference in electron

temperature between the simulations caused by the different Joule heating terms.

The electron temperature is important in these simulations because it is used to directly

calculate the electron collision frequency. The ambient collision frequency along with the

increased collision frequency from VLF heating of the ionosphere for simulations using Eq. 4-21

and Eq. 4-23 are shown on the left of Figure 4-6. Because the heated electron temperature

was greatest using Eq. 4-23, simulations using Eq. 4-23 have a larger increase in collision

frequency over ambient than those using Eq. 4-21. For both simulations, the largest increase

in collision frequency occurs around 78 km, which corresponds with the peak seen in electron
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Figure 4-5. Electron temperature from VLF heating (24 kHz) simulations using the three forms
of the 2nd-order moment of the Boltzmann Equation (a) electron temperature
using the 2nd-order moment, Eq. 4-19, (b) electron temperature using Eq. 4-21,
(c) electron temperature using Eq. 4-23, (d) difference in electron temperature
between simulations using Eq. 4-19 and Eq. 4-21, (e) difference in electron
temperature between simulations using Eq. 4-21 and Eq. 4-23, (f) percent
difference of electron temperature between simulations using Eq. 4-21 and Eq.
4-23.
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temperature. Also, there is negligible change in collision frequency from ambient above 85 km

which again corresponds to the minimal electron temperature heating present there from the

24 kHz source.
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Figure 4-6. (left) 1-D vertical slice through the grid center showing the ambient collision
frequency with the increased collision frequency from simulations using Eq. 4-21
labeled JJ and Eq. 4-23 labeled JE, (right) 2-D slice of the collision frequency
percent difference between simulations using Eq. 4-21 and Eq. 4-23.

To better understand the differences in increased collision frequency between simulations

using Eq. 4-21 and Eq. 4-23, the percent difference in collision frequency is shown in 2-D on

the right of Figure 4-6. The peak percent difference in collision frequency is at 80.5 km with a

38.5% increase. Between 65 km and 85 km there is a substantial percent increase in collision

frequency ranging from 5% to the peak at 38.5%, with an average of approximately 15% to

20%. Outside of this region, the percent change in collision frequency is less than 5%.

For the simulations shown here, there is a minimal difference between the simulated

electron temperature and collision frequency between the models using Eq. 4-19 and Eq. 4-21.

It is concluded that for CW VLF heating, the spatial gradient and divergence terms including

the conduction terms in the 2nd-order moment are negligible for VLF heating of the D-region

ionosphere. There was a large and significant difference in electron temperature and collision

frequency when comparing the simulations using Eq. 4-21 and Eq. 4-23. The only difference
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between these equations is the Joule heating term, Eq. 4-22, which means that these two

terms are not equivalent at VLF frequencies.
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Figure 4-7. Joule heating terms of Eq. 4-22 calculated for the above VLF heating simulations.

The Joule heating term calculated at the same iteration used for the above plots for the

simulations using Eq. 4-21 and Eq. 4-23 are shown in Figure 4-7. The areas of maximum

power absorption are the same for both simulations. It is clear that the J⃗ · E⃗ Joule heating

term calculates a more absorption than the 1
σ||
J⃗ · J⃗ Joule heating term for CW VLF heating.

In the simulations shown here, J⃗ · E⃗ caused an overestimation of the electron temperature and

absorption in the D-region ionosphere, and would correspond to an overestimation of signal

penetration into the ionosphere.

4.2.3 Second-Order Moment’s Dependence on First-Order Moment

The additional terms present in the 1st-order moment of the Boltzmann equation

were shown in Section 4.2.1 to potentiality be important for VLF heating of the D-region

ionosphere. The difference at one instant in time between simulations utilizing the 1st-order

moment 4-9 and the simplified version, Eq. 4-17, was around two orders of magnitude lower

than the peak plasma current density present. This is a 1% difference which is also a 40 dB

difference. This difference is large enough that any additional frequencies generated due to
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the additional pressure terms and interaction with the waves magnetic field may be able to be

detected with present VLF receivers.
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Figure 4-8. (a) Electron temperature from a simulation using the 1st-order moment, Eq. 4-9,
(b) electron temperature from a simulation using the simplified 1st-order moment,
Eq. 4-17, (c) difference in electron temperature between simulations shown in
panels a and b, (d) percent difference of electron temperature between simulations
shown in panels a and b.

Conversely, the additional terms present in the 2nd-order moment of the Boltzmann

Equation, Eq. 4-19, were found to be negligible. The difference in electron temperature

between simulations utilizing the 2nd-order moment of Eq. 4-19 and the simplified version, Eq.

4-21, was only 8 mK. This is about a 1 × 10−3% difference in electron temperature which is

also a 100 dB difference. This small difference is most likely indistinguishable in VLF heating

experiments.
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Two VLF heating simulations were run in order to determine if the version of the 1st-order

moment impacted significantly the electron temperature. The electron temperature for the

simulation using the 1st-order moment, Eq. 4-9, is shown in Figure 4-8a, and the electron

temperature for the simulation using the simplified 1st-order moment, Eq. 4-17, is shown in

Figure 4-8b. Both simulations used the 2nd-order moment, Eq. 4-19. These two plots appear

nearly identical to each other.

Differences are more clear when subtracting the two electron temperatures from each

other as seen in Figure 4-8c. A peak electron temperature difference of 10 K is present around

78 km altitude. Also evident are the vertical striations between 70 km and 80 km. These are

additional pressure gradients being produced in the 1st-order moment. Figure 4-8d shows the

percent difference between the two simulations with a maximum percent difference of 1.2%

around 80 km. This difference can create additional frequencies which may be significant

enough to be detected by a VLF receiver during a VLF heating experiment.

4.2.4 Discussion

There are seven additional terms (Eqs. 4-10 to 4-16) present in the 1st-order moment of

the Boltzmann Equation (Eq. 4-9) which are oftentimes assumed to be negligible. Terms 1

to 6 are time-varying and Term 7 was set equal and opposite to the ambient value of Term

2 and Term 3. For VLF heating of the D-region ionosphere, Figures 4-1 and 4-3 showed that

the difference in plasma current density between simulations that utilize the 1st-order moment

(Eq. 4-9) and the simplified version (Eq. 4-17) is 2 orders of magnitude less than the peak

plasma current density. It was also shown in these figures that some of the six additional

terms oscillate dominantly at twice the source frequency and can create pressure waves. These

additional plasma current density oscillatory frequencies and pressure waves are only present

when utilizing the Eq. 4-9 version of the 1st-order moment.

Figures 4-1 and 4-3 are only able to show the impact of the six additional terms on the

plasma current density at one snapshot in time. The impact over time on the plasma current

density from VLF heating was shown in Figure 4-4. The strength of the contribution of 24
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kHz oscillations from the six additional terms together was at least 70 dB lower than the total

plasma current density magnitude at 24 kHz. The 48 kHz contribution to the plasma current

density from the six additional terms was determined alone. It was not strong enough to be

distinguishable above the numerical noise floor in the Jx plasma current density.

The 1st-order moments impact on the electron temperature was shown in Figure 4-8.

There was a peak 1.2% difference in electron temperature between simulations using the

1st-order moment, Eq. 4-9, and using the simplified 1st-order moment, Eq. 4-17. There were

additional electron temperature striations present which arise due to the pressure gradients in

the 1st-order moment.

There is an impact on the plasma current density when utilizing the 1st-order moment

of the Boltzmann Equation. This impact is noticeable when comparing the differences in

simulation results of the plasma current density and electron temperature between simulations

using two versions of the moment. In the results presented here, the added frequencies the

plasma current density oscillate at which are generated by the 6 additional terms were not

in general above the numerical noise floor. If the numerical noise floor is lowered in future

simulations, then these additional oscillations of the plasma current density may be detectable.

Overall, the 1st-order moment of the Boltzmann Equation is recommended to be utilized in

future simulation. This is to accurately simulate all of the radio wave interactions with the

ionosphere such as creation of additional oscillatory frequencies of the plasma current density,

striations in the electron temperature, and the impact on the peak electron temperature.

The additional terms in the 2nd-order moment of the Boltzmann Equation (Eq. 4-19)

were found to be insignificant for CW VLF heating of the D-region ionosphere. The difference

in electron temperature between simulations utilizing the 2nd-order moment including

convection and conduction and the simplified version (Eq. 4-21) was found to be less than

8 mK whereas the peak electron temperature was 1000 K.

The largest impact on electron temperature was from the version of the Joule heating

term (Eq. 4-22) that was used. Figure 4-5e showed that the electron temperature heated
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region was larger and hotter in simulations using the J⃗ · E⃗ Joule heating term (Eq. 4-23)

versus simulations using the νme

qeNe

(
J⃗ · J⃗

)
Joule heating term (Eq. 4-21). The electron

temperature was found to be up to 40% hotter as shown in Figure 4-5f which caused up to

a 38.5% difference in collision frequency between the two simulations as seen on the left in

Figure 4-6.

For the VLF heating simulations of the D-region ionosphere shown here, the 2nd-order

moment of the Boltzmann Equation derived including convection and conduction (Eq. 4-19)

does not need to be implemented. The form of the 2nd-order moment that is recommended

to be implemented is Eq. 4-21. This is because the Joule heating term in this equation is the

form derived in the 2nd-order moment and does not make any more assumptions like the Joule

heating term in Eq. 4-23 makes. For other VLF heating experiments such as beat-wave heating

or thermal cubic nonlinearity, the additional terms in Eq. 4-19 may become important.

4.3 HF Heating

The HF cross-modulation simulations shown in Ch. 3 were run using the simplified

versions of the 1st- and 2nd-order moments of the Boltzmann Equation, Eq. 4-17 and Eq.

4-23. Ideally, the HF cross-modulation experiments would be simulated utilizing the 1st- and

2nd-order moments derived including the convective derivative. This is not done because

the HF heating model is currently 1-D and the pressure gradient terms cannot be evaluated

properly.

The Joule heating term, Eq. 4-22, in the 2nd-order moment of the Boltzmann Equation

was shown to have the most significant impact on electron temperature in the VLF heating

simulations shown above. The importance of the Joule heating term will be evaluated at HF by

re-simulating the 2.5 kHz sine wave modulation HF cross-modulation experiment utilizing Eq.

4-21 and comparing the results to those previously obtained using Eq. 4-23.

The top left panel of Figure 4-9 shows the difference in magnitude of the probe pulse at

the top of the ionosphere between the two simulations calculated as the simulation using Eq.

4-21 minus the simulation using Eq. 4-23. The positive difference means that the simulation
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Figure 4-9. HF simulations of 2.5 kHz sine wave cross-modulation using the two Joule heating
terms shown in Eq. 4-22 (top left) Difference in the magnitude of the probe pulse
between the two simulations, (top right) electron temperature recorded at 80 km
altitude, (bottom left) difference in electron temperature between the two
simulations, (bottom right) enlargement of a peak in the electron temperature
shown in the top right plot.

using Eq. 4-23 models a larger attenuation of the probe pulse at the top of the ionosphere.

More attenuation is the result of a hotter electron temperature and therefore higher collision

frequency.

The electron temperature at 80 km over the 5 ms simulation is shown in the top right

panel of Figure 4-9. There is no clear difference in the electron temperature in this plot.

The VLF heating simulations at 24 kHz showed a large and significant difference in electron
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temperature between the two Joule heating terms. The difference in electron temperature

between the two simulations is shown in the bottom left panel of 4-9. The maximum difference

between simulations is less than 2.5 K and the peak electron temperature at 80 km is around

870 K. The electron temperature difference is less than 1% of the peak electron temperature.

An enlargement of the electron temperature around 2.98 ms is shown in the bottom right

panel of Figure 4-9. The HF oscillations of the electron temperature are clearly visible as the

entire temperature profile oscillates predominantly at 2.5 kHz. As was seen in the bottom left

panel, the electron temperature difference between the two simulations is around 2.5 K.
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Figure 4-10. Electron temperature spectrum at 80 km altitude for 2.5 kHz cross-modulation
experiment for two simulations using the two Joule heating terms shown in Eq.
4-22 (left) centered around 6.5 MHz, (right) centered around 7.75 MHz.

The HF oscillations in the simulation using Eq. 4-23, J⃗ · E⃗ Joule heating term, appear

to be larger than those in the simulation using Eq. 4-21, νme

qeNe

(
J⃗ · J⃗

)
Joule heating term.

The magnitude of electron temperature HF oscillations are shown on the left of Figure 4-10

centered around 6.5 MHz and on the right centered around 7.75 MHz. The 6.65 MHz electron

temperature oscillation is 6 dB stronger in the simulation using J⃗ · E⃗ than in the simulation

using νme

qeNe

(
J⃗ · J⃗

)
. At 7.75 MHz, the electron temperature oscillations are 7.5 dB stronger in

the simulation using J⃗ · E⃗.

The attenuation on the probe pulse at the top of the ionosphere for these cross-modulation

experiments was between 2 dB and 4 dB. The maximum difference in attenuation between the
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simulations here (top left panel of Figure 4-9) is less than 1% of this. The impact of the

ambient neutral profiles and ambient electron density profiles were shown in Chapter 3 to

have a much more significant impact than the Joule heating terms here. Therefore, at HF

frequencies, the Joule heating terms and specifically Eqs. 4-21 and 4-23 are found to produce

very similar electron temperatures and nearly identical cross-modulation simulation results.

The nonlinear D-region heating FDTD model developed in this chapter implemented the

1st- and 2nd-order moments of the Boltzmann equation derived accounting for the convective

derivative to simulate CW VLF heating. The version of the Joule heating term impacted

the electron temperature significantly for CW VLF heating, but was not significant for HF

cross-modulation experiments. The effect on skywave propagation from electron heating is

investigated in Chapter 5.
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CHAPTER 5
ANALYSIS OF LIGHTNING SKYWAVES

In this chapter, two-dimensional, cylindrically symmetric, nonlinear FDTD models

are utilized to investigate skywave penetration into the ionosphere. The impact of plasma

nonlinearities on skywave propagation is analyzed through the effective skywave reflection

height because it is a relatively simple measurement to make in the field. Section 5.1 presents

results showing the individual effect of electron density changes and electron heating on the

effective skywave reflection height using a nonlinear lightning FDTD model discretized without

applying the Möbius transformation. The results are used to analyze the effects of the wave

on the plasma medium. Section 5.2 presents the nonlinear lightning FDTD model discretized

applying the Möbius transformation and is used to examine the effective skywave reflection

height in Section 5.3 for a variety of test cases and as a function of frequency in Section 5.4.

5.1 Non-Möbius Lightning FDTD Model

The lightning discharge impacts the ionosphere in a number of ways. Lightning emits a

propagating electromagnetic pulse (EMP) that directly heats the ionosphere (Joule heating);

it also causes the establishment of a quasi-electrostatic field [Pasko, 1998] that heats the

ionosphere and additionally has the potential to produce electric breakdown of the ionosphere.

Both of these strong fields interact with the D-region ionosphere causing significant electron

heating.

A nonlinear lightning FDTD model discretized without applying the Möbius transformation

is utilized here to study the effects of electron density changes and electron heating on

skywave propagation. This model is not utilized to make absolute predictions about the

change in skywave penetration in a linear model versus nonlinear model. Rather, only the

relative importance of electron heating and electron density changes are analyzed through

differences between the three versions described below. Kotovsky and Moore [2017] noted

that “the differencing technique implemented here is sufficient for simulations of ionospheric

disturbances at distances within a few hundred kilometers of the lightning channel, these
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simplifications would not likely be sufficient for precise calculations of lightning radiation

fields.” The differencing technique implemented for the electrodynamic model is non-Möbius

and 1st-order accurate so it is unclear whether oblique reflections are calculated accurately.

A 2nd-order accurate Möbius transformation implementation will be presented later in this

chapter to analyze the skywaves specifically.

The non-Möbius transformation model was described in detail by Kotovsky [2016] and

Kotovsky and Moore [2017] and was previously used to model Long Recovery Early Events

(LOREs) in the nighttime ionosphere. A useful feature of this model is the capability to isolate

how changes in electron temperature and the chemical makeup (i.e., electron density) of the

ionosphere affect skywave propagation. In order to do this, three versions of the lightning

FDTD model are created. The first version is nonlinear and includes changes in electron

temperature labeled (Te) in plots, and changes in chemical makeup labeled (Ne) in plots. The

second version is nonlinear and includes changes in electron temperature, but the chemical

makeup remains at the ambient values. By comparing the outputs from these two versions,

it is possible to determine the impact that changes in electron density have on skywave

propagation. The third version is linear and maintains the ambient electron temperature and

chemical makeup of the ionosphere. Comparing the results of the second version, nonlinear

(Te), and the third version, linear, allows a determination of the effect of electron temperature

changes on skywave propagation.

The simulation space used for this model was 2-D cylindrically symmetric, 100 km

vertically, and 400 km radially. The grid step size was 200 m vertically and 1000 m radially

with a time step of 3 ns. The lightning return stroke channel used in this model was a lossless

transmission line from ground level up to 10 km with a return stroke speed of 2/3 the speed of

light. The Heidler function [Heidler et al., 1999] was used to define the channel base current

with τ1 = 50 µs and τ2 = 250 µs.

A 200 kA return stroke peak current was simulated and the vertical electric field on the

ground 250 km away from the lightning channel is shown in Figure 5-1 for all three versions
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of the model. The electric field has been normalized by the peak groundwave electric field.

As a result, the groundwaves for the three models are identical and peak at the same time

because they propagate through bounded free space and do not significantly interact with the

ionosphere. A high peak current of 200 kA was utilized in order to most exaggerate any effects

that changes in chemistry would have on the effective reflection height.
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Figure 5-1. (top) Vertical electric field showing the groundwave and one-hop skywaves
recorded 250 km away from the lightning channel for the nonlinear (Ne and Te),
nonlinear (Te only), and linear versions, (bottom) enlarged version of the vertical
electric field.

While the normalized groundwaves are the same, the skywaves are not. For the one-hop

skywaves, there is a clear distinction in timing of the waveform between the linear model

and the two nonlinear models. The bottom panel of Figure 5-1 shows an enlargement of a

portion of the top panel of Figure 5-1 around the peak region of the three skywaves. The peak

skywave electric field in the linear model arrives approximately 40 µs before both skywave

peaks of the nonlinear models. The difference between peak skywave electric fields for the

nonlinear models is minor and is less than 1 µs. When using the peak-to-peak method to

determine effective skywave reflection height and since all three groundwaves peak together,
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any delay of peak skywave electric field indicates a higher effective skywave reflection height.

The effective skywave reflection heights are determined to be 90.5 km for the linear model,

99.5 km for the nonlinear model (Ne and Te) and 99.6 km for the nonlinear model (Te only).

The skywaves in the nonlinear models penetrate effectively nine kilometers deeper than in the

linear case according to these non-Möbius, 1st-order accurate models. The 0.1 km difference

of effective skywave reflection height between the two nonlinear models is minor and indicates

that changes in ionization do not significantly affect skywave propagation for a first return

stroke. The 9.1 km difference of effective skywave reflection height between the nonlinear

(Te only) and linear models indicates that electron heating could possibly modify skywave

propagation significantly and it should be properly evaluated. We use this information in our

formulation of the 2nd-order accurate Möbius transformation implementation. It is concluded

that the main nonlinear factor affecting EMP penetration into the ionosphere is electron

heating and not changes in electron density for first return strokes. Because our interest lies

in first return strokes, the impact of electron heating is investigated further in this work and

changes in electron density are not.

5.2 Möbius Lightning FDTD Model

To more accurately analyze the effects of electron heating on skywave propagation, a

nonlinear lightning FDTD discretized applying the Möbius transformation is presented. The

basis of the lightning skywave model presented here is Linear Method 2 described in Chapter 2.

In this model, the collision frequency is allowed to change temporally and spatially to account

for electron heating. The electron density is held constant at the ambient value. The analysis

in Section 5.1 indicates that this approximation is valid for investigating the propagation

of skywave components radiated by first return strokes. To calculate electron heating, the

lightning FDTD model utilizes the quasi-static heating approximation to update a temporally

and spatially varying ionospheric mobility [Kotovsky, 2016; Kotovsky and Moore, 2017]. The

relationship between electron mobility and collision frequency is shown in Eq. 5-1. Calculating

the collision frequency in this manner assumes that the collision frequency is much greater
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than the cyclotron frequency and the wave frequency. This assumption is valid here because an

isotropic plasma is simulated and only frequencies below 100 kHz are investigated.

ν =
qe

meµe

(5-1)

Two versions of the lightning FDTD model are utilized to determine the effect of electron

heating on skywave penetration. This first version is nonlinear, allowing the collision frequency

and therefore conductivity of the ionosphere to change spatially and temporally. The second

version is linear and holds the conductivity of the ionosphere constant. Both versions are 2-D,

cylindrically symmetric and utilize a 200 m radial and 200 m vertical spatial step size with

grid dimensions of 500 km radially by 104 km vertically. Used throughout this work is electron

density profile I and neutral profile 4 shown in Figure 3-4.

For the mobility model described by Kotovsky and Moore [2017], the ionospheric

conductivity at 80 km is shown in Figure 5-2 as a function of the electric field strength. It

is seen that the conductivity decreases rapidly for electric field values between 0.05 V/m and

1 V/m and levels off as the electric field increases past 1 V/m. On a base level, a decrease in

conductivity allows the electric field to penetrate deeper into the plasma. Because the electric

field produced by a lightning return stroke is directly related to the return stroke peak current,

there are diminishing returns in changes of ionospheric conductivity as the return stroke peak

current increases. For relatively weak lightning discharges, as the return stroke peak current

increases, it is expected that the conductivity of the ionosphere will decrease rapidly causing

the effective skywave reflection height to increase rapidly. For relatively strong lightning

discharges, as the return stroke peak current increases, it is expected that the conductivity of

the ionosphere will decrease slowly and the effective skywave reflection height will increase to a

lesser extent.

The lightning return stroke channel used in the model starts at ground level and continues

up to 10 km with a return stroke speed of 2/3 the speed of light. The Heidler function [Heidler

et al., 1999] is used to define the channel base current in order to represent return stroke
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Figure 5-2. Conductivity of the ionosphere at 80 km as a function of the electric field.

current fronts and recoveries in comparison to linear rise with exponential decay models. The

Heidler function parameters used were τ1 = 20µs and τ2 = 100µs. These parameters do

not directly represent the simulated return stroke risetime and recovery. The simulated return

stroke risetime was 7.6µs when measured from 10% to 90% of peak current. The recovery

time was 72.1µs when measured from the time of peak current to the 50% value during

current decay. These values are larger than realistic lightning due the grid’s inability to resolve

higher frequencies present in faster risetimes. The current propagates up the return stroke

channel using a lossless transmission line model: I(z, t) = I(0, t − z/v). When there is no

attenuation, all of the charge is deposited at the top of the lightning channel. Because of this,

the quasi-static fields are larger in this model than a model utilizing a lossy transmission line

model. For this implementation, there is also a negative field radiated from the top of the

channel, and this second field does not appear to exist in actual ground data. Nevertheless, we

inperpret our simulations with this knowledge in mind.

The radiation fields are important for skywave propagation and to verify their magnitude

in this model, the electric field at 100 km is compared against an analytical formula that

estimates the far-field electric field as a function of time or distance [Uman and McLain, 1969;

Uman et al., 1975]:
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Ez(D, t) = − v

2πϵ0c2D
i(t−D/c) (5-2)

where Ez(D, t) is the vertical electric field on the ground at a distance D and time t, v is the

return stroke speed, and i(t−D/c) is the current at the channel base at retarded time t−D/c.

In this work, only the peak electric field strength will be compared to the peak return stroke

current.

For a 100 kA return stroke peak current at 100 km distance with a return stroke speed

of 2/3 the speed of light, this formula calculates a peak electric field of 40 V/m. With the

same parameters, the lightning FDTD model simulates a peak electric field of 41.1 V/m.

Therefore, the lightning channel without attenuation utilized here accurately simulates the

far-field radiation pattern as expected of a lightning return stroke.

5.3 Skywave Reflection Height

5.3.1 Linear vs Nonlinear Model

A decrease in electrical conductivity from an electron temperature increase due to electric

field heating, as shown in Figure 5-2, is expected to allow deeper penetration of the electric

field into the ionosphere in the nonlinear model. The vertical electric field created by a 100

kA return stroke peak current lightning discharge 850 µs after the start of the lightning stroke

is shown on the left of Figure 5-3 for the linear FDTD and on the right of Figure 5-3 for the

nonlinear FDTD including heating. The black horizontal bar at 80 km altitude denotes the

extent of the electric field penetration into the ionosphere in the linear model. The black

vertical bar at 250 km radially denotes the groundwave wavefront in the linear model. In

the nonlinear model, the groundwave wavefront denoted by the vertical bar is not affected

significantly, which is to be expected. It is clear that the electric field in the nonlinear model

extends visibly above the horizontal bar and reaches over 85 km altitude directly above the

lightning channel, a further 6 km than the linear model. The increased penetration occurs for

both the quasi-electrostatic (QE) field [Pasko, 1998] (and possibly induction fields) directly

above the lightning channel and for the skywave wavefront at 250 km radially.
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Figure 5-3. 100 kA return stroke peak current lightning discharge simulated and the vertical
electric field is recorded at 850 µs. Horizontal and vertical black bars denote the
wavefront in the linear model. (left) vertical electric field in the linear model,
(right) vertical electric field in the nonlinear.

The increased penetration of the electric field into the ionosphere is expected to be seen

on the ground as a delay in the time-domain skywave waveform in the nonlinear model versus

linear model. The vertical electric field as a function of time measured at ground level 250 km

away from the lightning channel for a 100 kA return stroke peak current is shown on the left of

Figure 5-4 for the linear and nonlinear versions.

It can be seen that the groundwaves for the two models are exactly the same. The

rise, peak and fall of the groundwaves all align perfectly. Even the first negative peak and

subsequent ripple align until the skywave of the linear model arrives. This behavior is as

expected because the groundwave does not significantly interact with the ionosphere and it

propagates essentially through bounded free-space, which in this model is the region from

ground level up to 60 km.

For the one-hop skywaves shown here, there is a clear distinction in timing of the

waveform between the linear model and the nonlinear model. The right panel of Figure 5-4

shows an enlargement of the left panel around the skywave peak. The peak skywave electric

field in the linear model arrives approximately 21.6 µs before the skywave peak of the nonlinear

model. When using the peak-to-peak method to determine effective skywave reflection height,
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Figure 5-4. (left) Vertical electric field showing the groundwave and one-hop skywaves recorded
250 km away from the lightning channel for the nonlinear and linear versions, (left)
enlarged version of the vertical electric field around the skywave peak.

and because the groundwaves peak together, any delay of peak skywave electric field indicates

a higher effective skywave reflection height. The effective skywave reflection heights are

determined to be 92.4 km for the linear model and 97.8 km for the nonlinear model. The

skywave in the nonlinear model penetrates effectively 5.4 km deeper than for the linear case.

This is similar to the increased penetration seen in Figure 5-3. The peak electric field of the

skywave in the nonlinear model is found to be 0.3 V/m weaker than in the linear model.

The weaker electric field is caused by the increased absorption in the ionosphere due to the

increased collision frequency.

5.3.2 Dependence on Return Stroke Peak Current

A 100 kA return stroke peak current was shown to penetrate effectively 5.4 km deeper

into the ionosphere in the nonlinear model as compared to the linear model. In Section 5.2

it was hypothesized that effective skywave reflection heights would increase substantially as

return stroke peak current increased for weak return strokes (<50 kA) and would level off for

relatively strong return strokes (>50 kA). The left panel of Figure 5-5 shows the normalized

vertical electric field at ground level as a function of time measured 250 km away from the

lightning channel for eight different peak currents and the linear model. The electric field was

normalized by the peak groundwave electric field in each simulation. It is noted that when
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the electric field is normalized this way, linear simulations produce exactly the same electric

field waveform regardless of the peak return stroke current. As is expected, the normalized

groundwave is the same in all nine simulations. Therefore, any delay in skywave peak directly

correlates to an increased effective skywave reflection height.
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Figure 5-5. (left) Vertical electric field for return stroke peak currents of 1 kA, 10 kA, 30 kA,
50 kA, 75 kA, 100 kA, 150 kA, 200 kA and the linear model recorded at 250 km
from the lightning stroke, (right) enlargement around the skywave peak.

The right panel of Figure 5-5 is a zoomed in version of the recorded electric field, focusing

on the skywave peaks. For the linear model, the effective skywave reflection height is not a

function of the peak return stroke current. In the simulation shown here, the linear model

has an effective skywave reflection height of 92.4 km. For the nonlinear models, the effective

skywave reflection height is very much a function of return stroke peak current. The eight

return stroke peak currents modeled are 1 kA, 10 kA, 30 kA, 50 kA, 75 kA, 100 kA, 150 kA,

and 200 kA with effective skywave reflection heights of 94.2 km, 96.6 km, 97.3 km 97.6 km,

97.7 km, 97.8 km, 98 km, and 98.1 km, respectively.

As hypothesized, as the return stroke peak current increases, the relative increase in

effective skywave reflection height decreases. Between linear and 1 kA, 1kA and 10 kA, 10 kA

and 30 kA, 30 kA and 50 kA, 50 kA and 75 kA, 75 kA and 100 kA, 100 kA and 150 kA, and

150 kA and 200 kA, the increases in effective skywave reflection heights are 1.8 km, 2.4 km,

0.7 km, 0.3 km, 0.1 km, 0.1 km, 0.2 km, and 0.1 km, respectively. The difference in effective
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skywave reflection height between the linear model and nonlinear model is shown in Figure

5-6. The shape of increased skywave penetration closely represents that of the change in

conductivity as a function of electric field shown in Figure 5-2. Note that the y-axis is inverted

in Figure 5-2 in order to highlight this effect. There is a large increase in skywave penetration

at low return stroke peak currents and the rate of penetration increase levels off at higher

return stroke peak currents.
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Figure 5-6. Relative increase of effective skywave reflection height in the nonlinear model
versus linear model at 250 km from the lightning channel as a function of return
stroke peak current.

The normalized electric field skywave peak shown on the right of 5-5 decreases

monotonically as the return stroke peak current increases. There is a large decrease in the

normalized electric field skywave peak between linear and 1 kA and a decrease continues

consistently up to 200 kA. As the conductivity of the ionosphere decreases, the collision

frequency increases. Therefore, as the return stroke peak current increases, it causes the

heated ionospheric conductivity to decrease and collision frequency to increase. The increased

collision frequency results in increased absorption of the skywave waveform for higher return

stroke peak currents.
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5.3.3 Dependence on Ambient Profile

Electron density profile I shown in Figure 3-4 has been used throughout this work. There

are two more electron density profiles (II and III) which are both more dense than profile I. The

denser profiles are expected to increase the conductivity of the ionosphere and therefore lower

the effective skywave reflection height.

Figure 5-7 shows the effect on effective skywave reflection height due to the ambient

electron density profile. The vertical electric field is recorded at 250 km with a 100 kA return

stroke peak current. For profile I, the linear and nonlinear models have effective skywave

reflection heights of 92.4 km and 97.8 km respectively with a difference of 5.4 km. For profile

II, the linear and nonlinear models have effective skywave reflection heights of 88.9 km and

97.0 km respectively with a difference of 8.1 km. For profile III, the linear and nonlinear models

have effective skywave reflection heights of 85.1 km and 90.6 km respectively with a difference

of 5.5 km.
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Figure 5-7. For two ambient profiles, vertical electric field of the skywave for the linear version
and nonlinear (Te and Ne) version.

As the electron density profile becomes more dense, the effective skywave reflection height

for the linear and nonlinear models decreases. There is a 7.3 km decrease in effective skywave

reflection height between the linear models utilizing profile I and profile III. The increased

penetration in the nonlinear models for ambient electron density profiles I and III are similar at
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5.4 km and 5.5 km respectively. Interestingly, the increased penetration in the nonlinear model

for ambient profile II is significantly larger at 8.1 km. It is seen that the skywave penetrates

deeper into the ionosphere across a range of electron density profiles in the nonlinear model

versus linear model.

5.3.4 Dependence on Calculation Method

The relative timing between the peak of the groundwave to the peak of the skywave

known as the peak-to-peak method has been used throughout this work to determine effective

skywave reflection heights. Two other popular methods are the relative timing between

the start of the groundwave defined here as 5% of the groundwave peak and the slow/fast

breakpoints. The slow/fast breakpoints were originally defined in McDonald et al. [1979] and

were first used to calculate ionospheric reflection heights by Schonland et al. [1940] and Kinzer

[1974] for each breakpoint, respectively, and more recently used by Carvalho et al. [2017].

The location of the slow/fast breakpoints are labeled on the bottom left panel of Figure 5-8.

Because the fast breakpoint occurs after the slow breakpoint thus increasing the relative time

delay from the start of the groundwave, the fast breakpoint method will always calculate a

higher effective skywave reflection height. In this work the slow breakpoint is defined as 5% of

the fast breakpoint peak.

As the observation distance increases from the return stroke location, the waveforms

of the groundwave and skywaves begin to overlap substantially. This effect is clearly visible

in the top panels of Figure 5-8 which show the vertical electric field at 250 km and 750

km of both the groundwaves and skywaves. At 250 km the slow and fast breakpoints

can be well-estimated, but at 750 km, the groundwave and skywave begin to overlap

substantially. In order to properly determine effective skywave reflection height using the

slow/fast breakpoints, the groundwave and skywave need to be completely separated from

each other. A lightning return stroke was simulated in a larger all free-space grid in order to

record the pure groundwave. The groundwave only portion of the lightning return stroke is

shown in the middle panels of Figure 5-8. It is noted that the magnitude of the groundwave
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Table 5-1. Method Based Reflection Height∗
250 km
Linear Nonlinear Diff

SB 78.1 83.6 5.5
FB 86.2 91.9 5.7
PtP 92.4 97.8 5.4
∗All heights are in kilometers

is larger than experimentally observed groundwaves due to the use of a perfectly conducting

ground instead of a realistic lossy ground [Aoki et al., 2015]. The groundwave magnitude does

not affect the results presented here since the relative timing of the groundwave peak and

features are of interest. Now that the groundwave is fully known, it can be subtracted from

the combined electric field (top panels) to leave only the skywave waveform which is shown

in the bottom panels of Figure 5-8. The slow/fast breakpoints are clearly distinguishable now.

Additional multi-hop skywaves can also be seen at both distances. It is noted that to compare

experimental observations to simulation results at propagation distances of 750 km from the

lightning channel, the curvature of the earth needs to be accounted for in the simulation and

calculation of the skywave effective reflection height.

Calculating the effective skywave reflection heights at 250 km (left half of Figure 5-8)

for the nonlinear model, the slow breakpoint method calculates a height of 83.6 km, the fast

breakpoint method of 91.9 km and the peak-to-peak method of 97.8 km

The slow/fast breakpoint methods are now applied to the linear model. For the 250

km observation point, the slow breakpoint method calculates a height of 78.1 km, the fast

breakpoint method of 86.2 km and the peak-to-peak method of 92.4 km. The skywave

effective reflection heights for the linear and nonlinear models at 250 km are tabulated in Table

5-1. Included is also the difference between the two models for each calculation method.

It is clear that the method used to calculate effective skywave reflection height has

a strong impact on the calculated reflection height. There is a 15 km range between the

methods for the calculated skywave effective reflection height at the 250 km observation

distance. The slow breakpoint method calculates the lowest skywave effective reflection height,
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Figure 5-8. At 250 km and 750 km from the lightning return stroke for the nonlinear model,
(top) the vertical electric field including the groundwave and skywave, (middle) the
vertical electric field of the groundwave, and (bottom) the vertical electric field of
the skywaves. GS: groundwave start, GP: groundwave peak, SB: slow breakpoint,
FB: fast breakpoint, SP: skywave peak.

135



0 0.5 1 1.5 2 2.5
-2

-1

0

1

2

3

4

5

6

7

8

9

Nonlinear
Linear

El
ec

tri
c 

Fi
el

d 
[V

/m
]

Time [ms]

Linear vs Nonlinear Skywaves

1-hop skywaves

2-hop skywaves

3-hop skywaves
4-hop skywaves

Figure 5-9. The vertical electric field of the skywaves (groundwave removed) for the linear and
nonlinear models recorded at 250 km from the lightning return stroke. It can be
seen that the entire nonlinear skywave waveform is delayed in time compared to
that of the linear model.

the fast breakpoint is in the middle, and the peak-to-peak method calculates the highest

reflection height. Regardless of the method used, it has been shown that skywaves reflect from

a higher altitude in the nonlinear simulations than in the linear. For the simulation conditions

shown here, the skywave from a 100 kA peak return stroke lightning flash penetrates ~5.5 km

deeper into the ionosphere in the nonlinear model at 250 km. The increased penetration can

further be seen in Figure 5-9 which shows the skywaves for the linear and nonlinear models

at 250 km for a 100 kA return stroke peak current. There is a visible delay in the entire

time-domain waveform of the skywaves for the nonlinear simulation in comparison with the

linear simulation. Additionally, this time delay tends to grow with the multi-hop skywaves.

5.4 Frequency Dependent Reflection Height

A lightning skywave has most of its power in the ELF and VLF range as the higher

frequencies either penetrate through the ionosphere or are highly attenuated. This can be seen

in Figure 5-10 which shows the magnitude spectrum of the skywaves and groundwave recorded

250 km away from a 100 kA return stroke peak current using the nonlinear model and linear

model. The groundwaves spectral content is visibly larger in magnitude than the skywaves.
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Additionally, the groundwave shows strong nulls (20 dB weaker) every ~20 kHz with the first

null at 20 kHz. These nulls result from the negating field previously discussed in the context

of the lightning channel model. Ideally, this second field would not be included. In general, the

spectral content of the groundwave decreases in magnitude as the frequency increases.
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Figure 5-10. The spectra of the groundwave and 1-hop skywave recorded at 250 km for the
nonlinear model and a 100 kA return stroke.

For the skywaves, the spectral content of the linear model is generally slightly larger

in magnitude than the nonlinear model. The linear model has a first strong null at 30 kHz

whereas the nonlinear model has a first null at 33 kHz. Similar to the ground wave, the

spectral content of the skywaves decreases with increasing frequency. The magnitude of the

spectral content decreases faster as the frequency increases for the skywaves than for the

groundwave. Starting at ~60 kHz and higher in frequency, the skywaves spectral content

appears to include numerical noise.

The ionospheric plasma is a highly dispersive medium causing all frequencies to reflect

at a different altitude [Westcott, 1962a,b]. The calculations of skywave effective reflection

height presented so far in this work have not been frequency dependent, but instead based on

certain characterizations of the groundwave and skywave waveforms. By using the frequency

domain it is possible to calculate the frequency based reflection height. In order to do this,

the groundwave and skywave are first separated as shown in Section 5.3.4. Then the Fast
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Fourier Transform (FFT) of the skywave is divided by the FFT of the groundwave. Next the

negative change in phase per frequency is calculated, −∂ϕ
∂f

, which is then divided by 2π. This

results in a time delay as a function of frequency. This time delay is then used in the standard

triangularization method to calculate skywave reflection heights.

The skywave reflection height as a function of frequency is shown in Figure 5-11. This is

for the same 100 kA peak return stroke recorded 250 km from the lightning return stroke as

shown in Section 5.3.4. As has been shown to be expected, the nonlinear model calculates a

higher effective skywave reflection height across the entire frequency spectrum shown (1 to

100 kHz). The difference between the nonlinear and linear reflection heights are on average

between 4 and 7 km across the frequency spectrum which aligns with the difference calculated

by the slow/fast breakpoints and peak-to-peak methods at this distance.
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Figure 5-11. The effective skywave reflection height as a function of frequency for the linear
and nonlinear models recorded at 250 km from the lightning return stroke.

There are sharp increases in the reflection height for both the linear and nonlinear models

around ~19 kHz, ~39 kHz, ~59 kHz, ~79 kHz, and ~99 kHz, which correspond to the nulls

seen in the groundwave spectrum shown in Figure 5-10. The frequency based reflection height

is not valid at these peak locations and for ~1.5 kHz on either side. There is a sharp decrease

in reflection height for the linear model at 30 kHz and nonlinear model at 33 kHz which

correspond to the nulls seen in the spectra of the skywaves at each frequency, respectively. A
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relatively stable reflection height is seen between 41 kHz and 58 kHz with a reflection height of

~90 km for the nonlinear model and 81.5 km to 84.5 km for the linear model. Numerical noise

beyond 60 kHz causes significant oscillations in the reflection heights for both models.

It can be seen from the highly frequency dependent reflection heights that it is not

possible to determine a single, distinct skywave reflection height due to the highly dispersive

ionospheric plasma. Of course, accounting for the negating field in the ground wave might

help address this issue. For example, between 1 and 16 kHz, both the linear and nonlinear

models demonstrate a 13 km range in calculated reflection heights. Instead, the spectra of

an experimentally observed lightning skywave can be compared to the spectra of a simulated

skywave. By simulating lightning skywave propagation using a range of electron density

altitude profiles, the electron density profile at the time of experimental observations can then

be deduced by best fitting the two spectra such as in the work of Hu and Cummer [2006]; Han

and Cummer [2010a,b]. Due to the increased skywave penetration into the ionosphere seen

in the nonlinear models used in this chapter, it is suggested that nonlinear models including

electron heating are utilized for future skywave analysis.
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CHAPTER 6
SUMMARY AND SUGGESTIONS FOR FUTURE WORK

6.1 Summary of Contributions

In this dissertation, we have simulated and investigated nonlinear interactions in the

D-region ionosphere produced by high-power radio waves from VLF and HF transmitters and

lightning, and have compared the simulations to experimental observations.

The FDTD method was first investigated for a linear cold plasma. Five different

linear cold plasma FDTD methods were presented which were discretized using the Möbius

transformation. It was found that by using the Möbius transformation that all five methods

maintained the same stability conditions as free space. Additionally, the Möbius transformation

was found to create methods that very accurately model the cold plasma, as shown by

excellent agreement with analytical solutions. All five methods had a wide range in terms of

memory requirements and computational speed.

Method 2, was used as the foundation to create a 1-D nonlinear HF heating model of the

D-region ionosphere. Numerical simulations were run of HF cross-modulation and excellent

agreement was seen between numerical results and experimental observations. The thermal

cubic nonlinearity was simulated and it was predicted that the frequency with the largest

generated magnitude is around 5 kHz for the ambient profiles used. Additionally, the dominant

mechanism found for the thermal cubic nonlinearity in polar regions was determined to be a

mixing of the collision frequency at |ω2−ω1| with the plasma current density at ω1 producing a

radiated wave at |ω2 − 2ω1|, in confirmation of the work of Moore et al. [2013] and in contrast

to the work of Gurevich [1978] and Kotik and Ermakova [1998].

The 1st- and 2nd-order moments of the Boltzmann Equation derived including the

convective derivative were presented and analyzed in Chapter 4 at VLF frequencies. The 6

additional terms present in the 1st-order moment of the Boltzmann Equation were found

to potentially contribute detectably to the plasma current density at VLF frequencies. The

1st-order moment was also found to have an impact on the peak electron temperature. For
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the 2nd-order moment, it was found that the first term, the Joule heating term, is the most

important for determining the change in electron temperature in the D-region ionosphere.

The additional terms in the 2nd-order moment derived including the convective derivative

version versus without the convective derivative were found to have a minimal impact on

electron temperature at VLF frequencies. Other modulation formats and their effect on these

conclusions were not explored.

The effect of nonlinear interactions on lightning skywave effective reflection height was

investigated in Chapter 5. It was found that skywaves penetrate deeper into the ionosphere

in the nonlinear model versus the linear model. Electron density changes were found to have

a minimal impact and electron heating was shown to have a significant impact on skywave

propagation. Electron heating was seen to be important for all return stroke peak currents,

even those as little as 1 kA to 10 kA. At lower return stroke peak currents, the increased

penetration was shown to increase rapidly. The change in increased penetration then leveled

off at higher return stroke peak currents, in conjunction with the leveling off of the heated

conductivity of the ionosphere. Effective skywave reflection height was analyzed as a function

of frequency and it was shown that all frequencies simulated here demonstrated deeper

penetration in the nonlinear model versus linear model.

6.2 Suggestions for Future Research

The numerical models presented in this dissertation are some of the newest, most

advanced models presently for simulating heating of the D-region ionosphere. There are still

ways that these models could be improved in order to more accurately simulate the real world

and shed more light on the nonlinear processes involved. Most of the suggestions listed below

are currently limited by computer computation speed and memory requirements, especially for

the HF simulations.

6.2.1 Improved HF Heating Model

We first recommend an extension of the 1-D nonlinear HF heating model presented in

Chapter 3 to 3-D. A second improvement on this model is the inclusion of a DC current
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to represent the auroral electrojet. These improvements will provide a number of enhanced

features for this model. The first is by being in 3-D, more accurate beam patterns from HF

transmitters such as HAARP are able to be modeled. This will allow for FDTD simulations

and further investigation of the phasing effect seen at HAARP when splitting the array in

North/South versus East/West configurations. By including the auroral electrojet, ELF/VLF

wave generation experiments can be directly simulated that rely on the electrojet. Furthermore,

beam-painting and geometric modulation are able to be investigated in 3-D with the electrojet.

The next improvement for the HF heating model is to expand the model through the

D- region up into the E-region (100 to 150 km) and parts of the F-region (150 to 1000 km)

ionosphere. There are lots of E- and F-region experiments such as those by Papadopoulos et

al. [2011a,b] which would benefit and be more understood from an improved FDTD modeling

effort.

6.2.2 Improved Lightning Model

The lightning heating model of Chapter 5 provided excellent results, but could easily be

improved upon. The biggest improvement would be to simulate the earth’s magnetic field. In

order to do this at arbitrary angles, the 2-D cylindrical model needs to be upgraded to either

3-D Cartesian or ideally 3-D spherical. A 3-D spherical model would naturally account for

earth’s curvature, which is important for skywaves propagating past a few hundred kilometers.

Another improvement would be a reduction in grid size of this model. This would allow the

rise-time and recovery of the lightning return stroke to be reduced to more realistic values.

This in turn means that higher frequencies above 100 kHz would also be able to be modeled.

Another major improvement would be improved modeling of the groundwave. A first step

to do this is to utilize a lightning channel model that did not have the negating field present

above the the lightning channel. This would create a more realistic groundwave spectra than

that shown in Figure 5-10 and would remove the sharp peaks seen in the frequency based

reflection height seen in Figure 5-11. Another step to improve the groundwave is to include

142



a lossy ground to accurately recreate the groundwave magnitude at far distances [Aoki et al.,

2015].

Another potential use of this model is an investigation of the electric and magnetic field

that makes it to the top of the D-region ionosphere in a linear versus nonlinear model. This

will allow insight into how much wave energy is injected into the magnetosphere which is

important for Lightning-Induced Electron Precipitation (LEP). Simulations can be compared

with satellite measurements.

6.2.3 Moments of the Boltzmann Equation: VLF and HF

The 1st- and 2nd-order moments of the Boltzmann Equation derived including the

convective derivative were analyzed in 3-D for a broadside VLF source at 30 km altitude. To

represent a Navy VLF transmitter, a vertical monopole transmitter should be simulated. This

source will require a larger grid size due to the radiation pattern. Also, CW VLF heating was

simulated. Additional effects may be observed and certain terms may become more important

for other VLF modulation schemes and VLF heating experiments.

Furthermore, different terms in the moments of the Boltzmann Equation may become

more or less important at HF frequencies and an investigation into this is needed. It is

expected that the moments of the Boltzmann Equation derived including the convective

derivative at HF will be important for HF heating experiments and especially in forming

self-focusing pressure bubbles. A 3-D HF heating model is needed to investigate these effects.
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APPENDIX
LINEAR METHOD UPDATE COEFFICIENTS

The update coefficient matrices for Linear Method 2 are:
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The update coefficient scalars and matrices for Linear Method 3 are:
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The update coefficients for Linear Method 5 assuming 1-D propagation and the

background magnetic field is in the ẑ direction are:
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